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THERMODYNAMIC PROPERTIES OF MOLTEN-SALT SOLUTIONS

Milton Blander

INTRODUCTION

1.1 General

In this chapter the physical description of molten-salt solution thermodynamics will be dis

cussed. Because of the large volume of work in this field this chapter cannot be comprehensive.

As the field of molten-salt solution chemistry is still in a rudimentary state, this must be con

sidered as an interim report on some of its aspects.

The Gibbs free energy G and the Helmholtz free energy A are related to the chemical poten

tial of the component i, [i., of a solution by the relation

fdG\ fdA'

For pure liquid and solid i the symbols /x. and /xr, respectively, will be used to represent the

chemical potential. Rational forms can be deduced for expressing the chemical potentials of

components of solutions by considering a hypothetical ideal solution. In choosing such a hy

pothetical ideal solution, one must be careful to have it bear some resemblance to real mixtures,

and the equations derived should conform to the limiting laws which are valid for dilute solutions.

Since the equations derived should conform to the limiting laws, we will discuss these before dis

cussing ideal solutions.

1.2 The Limiting Laws

Limiting laws can be derived for any solution that is dilute enough so that the enthalpy of

solution per mole of solute is essentially independent of the concentration of solute and the

equation

H=n)H° +n2H*2 (1.2.1)

holds, where H is the total enthalpy of the solution, n, and H. are the number of moles and en

thalpy of pure solvent, and rz, and H~ are the number of moles and partial molar enthalpy of sol

ute.

If the solute has no ions in common with the solvent, then the ideal limiting laws may be

derived from statistical considerations. ' If a solute molecule dissolves to form k dif

ferent species with v, particles (or ions) of kind k, then the number of ways of arranging the

ions of the solute in solution, or the number of configurations Q, is given by

n(Bkfk
—^ , d.2.2)

-)T,P,nk +n.- [—)TlV,nk +ni=iii . (1.1.1)



where n, are the number of particles of type k, where B, is the number of ways of placing one

particle k in the solvent, and, if the solution is dilute enough, (B,) is the number of ways of

placing n , distinguishable particles k. The n, ! in the denominator corrects for the indistinguish-

ability of all the particles of a given type. The B, may be all different but are all proportional to

n ., the number of molecules of solvent. The entropy of mixing may be calculated from the relation

In 12. (1.2.3)
k

By using Stirling's approximation one obtains

AST
— =2ba In «, +SnAIn Pk - lnk In nk +2^

=Sv^«"2 'n n\ +^,vk™2 'n ^ife ~ ^,vk**2 'n ^fe^V +^'l'k**2 ' (1.2.4)

where B, = n, /3, and w", = v, «",/ anc' where w", is the number of molecules of solute. From Eqs.

(1) and (4) the ideal limiting laws for the solvent are

_ d\ST «2
Ml -^=.-77$, - S°) =-T^— =-RT 2i/A =RT In (1 - N22vA) , (1.2.5)

where N2 is the mole fraction of the solute. For the solute the ideal limiting law is

dAST n2
H " A =~T =^vkRT In —= 2^RT In N2 , (1.2.6)

on2 n.

where the term it2 [= H2 +2v^ In (/^A^)] is the partial molar free energy of a standard state
chosen so that a solution of component 2 will behave ideally at extremely high dilutions. The

term ti2 is a function of the concentration scale used. Equations (5) and (6) express the fact

that in a dilute solution the solvent obeys Raoult's law and the solute obeys Henry's law. The

limiting laws given by Eqs. (5) and (6) are independent of the specific properties of the solvent

(except for the value of f*2) unless the solvent has an ion or particle in common with one of the

species. If the ions or particles formed from the solute upon dissolution which are already pres

ent in the solvent are designated as /, then

n="n n ' (L2<7)lltnk\ II („;+ *,*,)!

where Kl is the number of / particles per molecule of solvent. If the K, are not very small, then

it may be shown that

/i, -/x° =RT In (1 -N2v) (1.2.8)

li7 -11 ~vRT In N, , (1.2.9)



where v = 2 v, and is equal to number of independent particles which differ from those already

present in the solvent which are introduced upon the dissolution of one molecule of solute. To

illustrate this the solute KG in the solvent AgNO. leads to a value of v = 2, but KN03 and

Ag.SO. in AgNO, lead to a value of v = 1. Partially ionized solvents such as water can be

described by using more than one value of v. The dissolution of HCI in HjO at concentrations

of HCI much lower than the concentration of H from the self-ionization of water leads to a value

of v = 1. At concentrations of HCI high enough so that the self-ionization of water is suppressed,

v = 2. Thus by choosing an ionic solute with a common ion, a distinction can be made between

an ionizing and a non-ionizing solvent by testing the limiting laws. Care must be taken before

using this as a criterion of the ionic nature of the solvent to apply these considerations to solu

tions that are dilute enough so that the limiting laws are valid.

1.3 The Temkin Ideal Solution127

Liquid salts are similar to solids in some of their aspects and differ considerably from solids

in important ways. A molten salt must be considered as an assembly of ions with the expected

alternation of charge as in solids, with the cations having anions as nearest neighbors and the

anions having cations as nearest neighbors. The enthalpies and energies of formation of solids

and liquids from the gaseous ions do not differ greatly, since the enthalpy and energy of fusion

is very small relative to the total lattice energy of the solid. The sharp increase of conductance

upon melting indicates that the melting process leads to ions of greater mobility than in the solid.

In the Temkin model, salts are considered as completely ionized. The strong Coulombic forces

in a molten salt lead to a strong tendency for the alternation of charges such that cations are sur

rounded by anions and the anions are surrounded by cations. If a mixture of the two monovalent

cations A and B and the two monovalent anions X- and Y~ is considered, then the anions re

side in a region adjacent to the cations and the cations reside in a region adjacent to the anions

and the molten salt might be considered as a quasi-lattice. If the two cations and the two anions

respectively have the same physical properties, then the cations can mix randomly in the cation

region of positions which is adjacent to the anions, and the anions can mix randomly in the anion

region of positions which is adjacent to the cations. The total enthalpy and energy of the solu

tion is the same as that of the pure components, and the heat of mixing and energy of mixing are

zero. The total entropy of mixing, AS_, can be calculated from the total number of possible equiv

alent and distinguishable configurations, co_,

AS„
• = In a>n M

(«» + «R)! («x + riy) !
(1.3.1)

wa!"b! rx ! nY!

where the n. are the number of cations of kind i and n . are the number of anions of kind ;'~. By

using Stirling's approximation

In (n !) = n In n —"n ; (1.3.2)



then

-AS
r

-= nA In NA + «A In NB + «x In Nx + rcy In NY , (1.3.3)

where n. and 72. are the number of qram moles of ions :' and /"*, and N. and N • are the ion frac-t j " ' ' i i

tions of cation i or anion /"" respectively.

NA = — / *X
nA+nB "x+nY

NB=—— , NY-
nA+wB nX+*Y

For any number of monovalent species

"A

NA "^i
/

NX
7

/

-AST
V~ 1.•= £ra. In N. + S«. In N.

R ' ' 7 7

(1.3.4)

(1.3.5)

The partial molar entropy of solution is then

(ST.. - S°) <3A5T (9AST <9AST
--InN./V.- = , (1.3.6)

R ' ' dn.. dn. dn.
'7 ' 7

and the chemical potential can be expressed by

u... - a°.^RT In N.N. . (1.3.7)

Equation (7) is compatible with (1.2.8), when ij is the solvent; if ij is the solute, fi.. differs from

[±2 in (1.2.9) by a constant. By defining the activity of the component ij, a.., by the equation

p.. - p°. = RT In a.. , (1.3.8)

then for a Temkin ideal solution

a..-N.N.. (1.3.9)

If the solution contains only one anion as X- and a number of cations, then for any component

such as AX for example, Nx *» 1 and



where N. x is the mole fraction of the component AX. A similar relation holds if the cation A is

the only cation. Thus, if in a mixture of several simple* salts containing two ions each, and if

all of the components of the mixture contain one ion in common, the Temkin ideal activity of a

component is equal to its mole fraction. In an ideal mixture of one mole of AX with one mole of

BX, for example, the activity of AX and of BX are both L.

On the other hand, in an ideal mixture of one mole of AX with one mole of BY,the activities

of AX and BY are both /. Thus the activity of a given mole fraction of an ionizing salt in a

mixture depends strongly on whether it has an ion in common with other salts in the mixture.

Even though the salts AY and BX have not been used, the activities of AY and BX are also /..

There are four different ions in this solution, and the restriction imposed by the condition of

electroneutrality reduces the number of independent thermodynamic components to three. If,

as is unlikely, in all equilibria and phases n. = wx and n„ = «Y' *nen another restriction is

imposed on the solution and it is a two-component system. If, in some equilibria this condi

tion is true, the solution may be termed a quasi-binary system for that equilibrium.

The condition of electroneutrality makes it necessary to choose electrically neutral com

ponents. In the three-component system A , B , X-, Y", for example, there are four possible

ways of choosing components

AX-BX-BY

AY-BX-BY

AX-AY-BX

AX-AY-BY

all of which are correct. For some compositions and choices of components a negative con

centration of one of the components would have to be used. For example a mixture of 1 mole of

AX, 1 mole of AY, and 1mole of BY, if described in terms of the components AX, BX, and BY,

would be composed of 2 moles of AX, 2 moles of BY and —1 mole of BX. Although this is a

thermodynamically valid method of description, it is usually more convenient to avoid negative

concentrations of components. Any partial molar value of the thermodynamic function T for the

component ij containing monovalent ions can be calculated in two ways by

" \^a) V*",7 \d",

*Simple salts contain only two atomic ions.



where n.. is the number of moles of the component ij. The use of the sum (dT/dn-) + (dT/dn.) per

mits one to avoid stating a choice of components. In general, the partial derivative of any thermo

dynamic function T for a component A X will be given by

/ dT \ / dT \ / dT
+ s

\dnA X / \dnA/ \dnX

An ideal mixture of two different salts of the same charge type as a mixture of A X and B Y

would give an expression for the total entropy of mixing of

and

so that

and

-ASr
= nA In /VA + «B In NB + nx In Nx + rcY In Ny (1.3.12)

-(S.. -S°.)
- = r In N. + s In N. , (1.3.13)

R '

^ -/^.. =RT In A/TNf (1.3.14)

a.. = NrNs. (1.3.15)

Another interesting definition of an ideal solution is that which is derived under the assump

tion that all cations and anions are randomly mixed despite the differences in the sign of the

charge. Although this is undoubtedly a poor picture of any molten salt, it can give an idea of

the effect of the interchange of cations and anions on the cation and anion positions; since a

molten salt is not a rigid lattice, some ions of the same charge must occasionally be near

neighbors. For the pure salts ij containing only monovalent cations the entropy of mixing is

AS°. AS° AS0
=n. In2 + n. In 2= -, (1.3.16)

R ' 1 R R

and for a random mixture of the four ions A , B , X~, and Y~

-A5^ nk nR
= nA In + n„ In

R nA+«B+«x+«Y nA+nB+nx+ny

nx ny
+ nx In + rav In , (1.3.17)

wA+r2B+"x+nY *A+nB+*X+wY

and, since wA + «B = n~ + nD, it can be shown that

AST AS; -£rc.AS:° -S«.AS°
= - = 2n. In N. + Sn. In/V . , (1.3.18)

R R t i 1 j '



which is the same as Eq. (5). Thus, the assumption of random mixing of all the ions leads to the

same definition of an ideal solution for mixtures of monovalent ions as does the Temkin model in

this case.

This conclusion may be generalized since the configurational integral for n molecules of uni-

univalent salt is

//» -BU..

J (n\)7
(dr)2n , (1.3.19)

where dris a volume element in configurational space B = (]/kT) and U.. is the total potential

energy of a salt, ij, in a given configuration and the integration is overall configurations. For a

mixture of anions, /, and cations, z,

z , J.S
mixture I I

-BU

.(drYn =
7Tn.\ 7772. !

» 7
(W\)2

(dT)

/here n = £?2. = X/2.. The tota I free energy of mixing per mole is

AA =A . , -22N.N.A.. = -kT In Z . 4 + llN.N. kT In Z....
m mixture i j ij mixture z y i;

For the case in which the quantity

.BU\nj...fe~ mix (dT)2n -£/V./Vy \n f...fe

is zero,* then

-BU.. .-
" (^r)2n

•AA = TAS_ = -RT(Sr2. In N. +Zn. In N.) ,T --->•-,• : • -; ;'

which is equivalent to Eqs. (5) and (18) but has been derived without a model

(1.3.20)

(1.3.21)

(1.3.22)

1.4 Salts Containing Ions of Different Charge

Although the laws of ideal solution are unambiguous for ionizing salts of the same charge

type, expressions for salts of different charge types present a problem. FjoVland has given an

extensive discussion of this. For a system A , B , X- for example one can consider that a

quasi-lattice exists with the anions occupying the anion region of the lattice and the cations

mixing on the cation portion of the lattice. For every B ion added from BX to a solvent AjX a

"vacancy" is also added. If, as is reasonable, there is a very large "concentration of vacancies

*One obvious condition for which this is true is when the two cations and the two anions respectively
have the same physical properties. In this case, for any given geometric configuration of the ions, the po
tential enerqy of the mixture ((7 . ) is the same as the potential energy of any one of the salts (U..).

*>' mix l)



or holes" in the solvent liquid, then the added hole at very low concentrations will have no ef

fect on the properties of the solution just as the presence of a common ion in the solvent sup

presses the effect of a solute ion on the limiting laws. The total ideal entropy of mixing would

then be

-AST

R ="AlnWA +«B lnNB C-4'1)

and

-ln/VB/ (1.4.2)

where salt 1 is A2X and salt 2 is BX. These equations will be valid as long as the "concentra

tion of vacancies' in the solvent is large enough to buffer the added "vacancies." Equations

(1) and (2) would hold for any valence types in such cases.

Fa^land has also considered the cases, analogous to those found in solid solutions, in which

a divalent cation salt BX will dissolve in a monovalent cation salt A2X by occupying one site and

creating a vacant site. If the vacant site associates with the B cation, then the cation lattice

behaves as a mixture of monomers and dimers and an approximate expression stated by Fgffland

and based on the calculations of the ideal entropy of mixing of molecules of different sizes '

is

-AST
72A ln/v: +72R In N' (1.4.3)

where N{ is an ion equivalent fraction of the z'th ion.

NA = , NR =
"A + 2nB nK + 2wE

2«B

-(*, - s°)
- = 2 ln/v; +N'B , (1.4.4)

R

•(S2 - S°)
InN' - N' . (1.4.5)

The assumption in Eqs. (3), (4), and (5) is that the divalent ion B and the associated vacancy

are twice as large as the A cation so that the entropy of mixing of cations is that of the "dimer"

(B -vacancy) and the "monomer" A . F</rland has discussed a small correction term to these

expressions to account for the fact that at high B concentrations, where more than one vacancy



may be near a given B , one cannot distinguish which one should be part of the "dimer." If

the cation vacancy dissociates from the B ion, then

-AS,

~~*'A '" '"A
R

<1

- = «A lnNA +«R In N' , (1.4.6)

S, -S°

R

I - S°

R

= -2 In/V; , (1.4.7)

•= -2 In NB . (1.4.8)

Equations (7) and (8) have been derived for solid solutions and are probably not reasonable pic

tures of liquids where "vacancies" must exist even in the pure salts.

The very careful study of the CaCO,-M2CO, systems, where M= Na or K, by Ftfrland and co

workers appeared to be inconsistent only with Eq. (6) ' and were consistent with Eqs. (1)

and (3).

Equations (1) through (8) are useful largely to obtain convenient forms for the expression of

chemical potential and may be generalized for mixtures of ions with different valences. The large

differences in the Coulombic interactions of ions of different valence make it improbable, ex

cept for very special cases, that the entropy expressions (1) through (8) will be valid over a

large range of concentrations for real systems.

1.5 Standard States and Units of Concentration

As seen by the preceding paragraphs, reasonable concentration scales are the mole fraction,

equivalent fraction, ion fraction, and ion equivalent fraction although this chapter will, generally,

use mole and ion fractions. The mole ratio defined by R, =n2/n^, where ?22 and n^ are trie num
ber of moles of solute and solvent, is sometimes convenient in dilute solutions when it differs

little from a mole fraction. The molarity scale (moles/liter) is sometimes convenient in a case,

for example, where experiments are compared with theoretical calculations made for a constant

volume process. The expression of concentrations on a molality scale (moles/1000 g solvent),

because of the large number of different solvents of different molecular weights, does not seem

to be well-chosen if one wishes ultimately to compare phenomena in different solvents.

Some definitions of the activity and activity coefficients of, for example, the salt B^X^ are

H2 - jz° +RT In a2 » y*2 +RT In a2 =$ +RT In A° , (1.5.1)

""V^B'rx*. ("AS)
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v'7 - (yB7 (y'x)s , (1.5.3)

y2- ^b^x*' d-5-4)

(NB)r (Nx)s

a2

W

a2
iy2D- ^(yg)r(y?)s- fl-5.5)

W

where the standard chemical potential /i, is the chemical potential of the pure liquid salt, fi- is

the chemical potential of a standard state chosen so that y2 approaches unity as the concentra

tion of all the solutes approaches zero, and //P is the chemical potential of pure solid. It should

be noted that the value of fi2 depends on the concentration scale used and unless otherwise stated,

the definition of ix2 derived from the use of the ion fraction scale expressed in (4) will be used

here.* For the comparison of the solution properties of different mixtures containing salts of dif

ferent melting points, the most convenient standard state is the pure liquid (supercooled if nec

essary) since there will be no break in the temperature dependence of some of the derived activ

ities at temperatures at which there are transitions in the solids. It is probably more meaningful

to compare liquid solution properties of a component with those of the pure liquid component. The

standard chemical potential /x2 is often conveniently used in dilute solutions. The usefulness of

any chosen standard state should be measured by the ultimate ability to measure the value of [i

in that state.

It should be noted that the single ion activity coefficients, yB, yx, y_, yx , etc., do not have

a strict thermodynamic significance except as a product for the ions in a neutral species or as a

quotient for ions with the same total charge. The use of single ion activity coefficients may often

be confusing and should be avoided if possible.

Excess chemical potentials may be defined by

ftf =RT In y2 . (1.5.6)

By considering the equality

/** - M° " RT In— , d.5.7)
y2

then since y2 approaches 1as the concentration of B s and X-r ions both approach zero, \i2 —/z°
is the excess chemical potential of the salt B X^ at infinite dilution and may be termed an excess
chemical potential of pure liquid B X at infinite dilution.

*To convert from one scale to the other, the relations /Xj (mole fraction) = [l2 (molarity) - RT In V. =/i.
(molality) + RT In (1000/M^) may be used, where V, is the volume of one mole of solvent and Af. is the gram
molecular weight of the solvent.
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SOLUTIONS WITH COMMON ANIONS OR COMMON CATIONS

11.1 Cryoscopic Methods of Investigation

The limiting laws have been investigated mainly by cryoscopy and with emf measurements. A

description of the theory and experimental applications of these methods is given in sections II.1

and M.2.

Cryoscopic measurements have been made from thermal halts, visual observations, and by fil

tration and analysis of solutions at equilibrium with a solid. For an equilibrium between a pure

solid A X (component 1) and a liquid mixture

d In a. d\nNArNxs d In y, AH,
= + = -, (II.1.1)

d(\/T) d(\/T) d(]/T) R

where A/7, is the enthalpy of fusion of A^X^. and a, is the activity of the component A^X^ in a
solution at equilibrium with the pure solid at the temperature T. This relation may be re-expressed

for the solubility of a slightly soluble salt A^X^.

d In a7 d\nN,rNxs d In y* (H* - H°)
X + ._,."--— -, (M.1.2)

d(]/T) d(1/T) d(VT) R

where (H* - H2) is the heat of the solution of solid A^X^. to infinite dilution. In general, y, and
y_ are not constant except in solutions dilute enough for the limiting laws to apply, and they must
be known in order to evaluate AH, and (H - HD) from cryoscopic or solubility measurements. The

term AH, is a function of temperature:

AH,-AH0, - fT AChdt , (11.1.3)
7 / •> T P

where AH. and AH? are the heats of fusion at the temperatures T and the melting temperature TQ
respectively and AC = C (liq) - C (solid). If the heat capacities of the pure solid and the pure

liquid A X can be expressed by

C=a + bT + cT~2 ;

the

Ac
AC -Aa + TA&+—. (11.1.4)

P T2

By introducing Eq. (1) and integrating one obtains

-AH0 /1 1 X / TQ Tn
' I ) + Aa( 1 - In —

T TQ/ \ T T

Ab fT2 \ Ac / 1 1
+ • T-2T° +T+^ F-rT1- (,UJ>



12

The considerable deviations from ideality of most mixtures of molten salts make it essential that

AH, be obtained from calorimetric measurements except for a limited number of cases. The use of

phase diagrams to obtain a "cryoscopic" heat of fusion under the assumption of ideal solution be

havior has been shown to be often in error. ' The terms containing the correction for AC must

be included in a calculation of a. from measurements of the liquidus temperature. For example, if

AC = 2 cal/deg mole at all temperatures and TQ/T = 1.2, the error in a1 would be about 2% if the
AC correction were excluded. For T0/T =• 1.5 the error is about 10%, and when TQ/T = 2 the error

in a. is about 31%. Since the values for the heat capacity for pure liquid have to be extrapolated

below the melting point, any errors in the extrapolation can be appreciable at large values of

TQ/T. Table 1 gives a summary of selected values of AH, and the parameters for C for solid
and liquid.45'73

Cryoscopic measurements have been used to test the limiting law expressed by Eq. (1.2.8).

Combining Eqs. (1.2.8) and (5) and expanding the logarithms in the relation obtained, one obtains

the van't Hoff relation.

RTi

AT
AH

f

•vN2 = (T0-T) , (11.1.6)

for small values of N2 and for values of AT small relative to TQ. Equation (6) has been used to
investigate the limiting laws in many systems. The freezing point lowering of N°N03 by NaCI

obeys Eq. (6) to about 7 mole %of NaCI for v- I.129.130 The compounds Na2C03, Na2S04,
NaBr03, Na2W04, Na2M04, Pb(N03)2, and LiN03 also gave apparent values of v *= 1 in NaN03;
KI04, LiCI, and CsCI led to values of v = 2, CaCI2, SrCL, and BaCL led to apparent values of

f =3, and LaCI 3to v=4 in NaN03.*'129 In molten AgN03 the solutes Ag2S04, KN03, and
Pb(N03)2 led to values of v = 1, and PbCI2, K2Cr207, HgCI2, HgBr2, and Hgl2 led to values of

v *= 3. In molten KN03 the limiting law has been demonstrated for a number of cases, mostly

at concentrations of solute less than 1 mole %. And Na2S04 in a solution with NaCI and

NaBr obeys the limiting law5 and Eq. (1.2.8) at all concentrations.

11.2 Electromotive Force Measurements

Measurements have been made in concentration cells with liquid junctions such as

AXn(/V2')
BX

AXn(N2)
BX

(II.2.A)

It should be noted that in most other cases of systems consisting of a solvent containing a foreign cation
and a foreign anion, deviations from ideality are large at the lowest concentrations of the studies cited so that
the limiting laws cannot be tested.
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Table 1. Melting Points, Heats of Fusion, and Heat Capacities of Some Salts '

(CP- a + bT+ c/T2)

Composition
r

m

(°K)

Hf or Htr
(kcal/mole)

C (solid)
P C?(liq)

a bx 103 ex 10~5 a

LiF 1121 6.47 10.41 3.90 -1.38 15.50

LiCI 883 4.76 (11.00)a (3.40)

LiBr 823 4.22 (11.50) (3.02)

Lil 742 3.50 (12.30) (2.44)

LiNO, 525 6.12 14.98 21.20 26.60

NaF 1268 8.03 10.40 3.88 -0.33 16.40

NaCI 1073 6.69 10.98 3.90 16.00

NaBr 1020 6.24 11.87 2.10

Nal 933 5.64 (12.50) (1.62)

NaN03(a) 549(Tr) 0.81(Tr) 6.34 53.32

NaN03(/3) 579 3.49 35.70 37.00

KF 1131 6.75 11.88 2.22 -0.72 16.00

KCI 1043 6.34 9.89 5.20 0.77 16.00

KBr 1007 6.10 10.65 4.52 0.49

Kl 954 5.74 11.36 4.00

KN03(a) 401(Tr) 1.40(Tr) 14.55 28.40

KN03(/3) 611 2.80 28.80 29.50

RbF 1068 6.15 (11.33) (2.55)

RbCI 995 5.67 (11.50) (2.49)

RbBr 965 5.57 (11.89) (2.22)

Rbl 920 5.27 (11.93) (2.27)

CsF 976 5.19 (11.30) (2.71)

CsCI 918 4.84 (11.90) (2.28)

CsBr 909 5.64 (11.60) (2.59)

Csl 899 5.64 (11.60) (2.68)

AgCI 728 3.08 14.88 1.00 -2.70 16.00

AgBr 703 2.19 7.93 15.40 14.90

AgN03(a) 433(Tr) 0.61(Tr) 8.76 45.20

AgN03(/3) 484 2.76 25.50 30.60

Numbers in parentheses are estimated values (Kl).

The emf of the cell can be given by

RT a2
AE =_ In—+A<£d|ff , (11.2.1)

where A0,.,f is the diffusion potential and the prime (') denotes the left-hand electrode. In a
binary system, all that need be known in order to evaluate a2/a'2 from the emf of cell (A) are the
Hittorf transference numbers of the components. For a system containing more than two com-
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ponents, the gradients of concentration for each component across the liquid junction between

the left- and right-hand compartments need also be known.

To give an idea of the magnitude of Ac/),.,, for salts containing only monovalent ions for

example, let us consider the approximate equation for mixtures of AX and BX dilute in AX

^diff =
RT/bAX ~ bBX

BX

RT b

(N, - AL') = •
AB

F b
(N, - K) , (11.2.2)

BX

where &.. is the mobility of the ion of species i relative to/. We may cite three pertinent ex

amples:

1. The ion A interacts so strongly with X"" that it has a low mobility relative to

X"*(£>AX - 0). In this case A</>,.,, is small only when (N2 —N2) is small.
2. The relative mobilities of A and B are the same. In this case Ac/> ,.,, is zero.

3. The A ion is relatively more mobile than the B ion. If b.~ - mbRy., then

^RT
Ac/,

diff •—- (m- D(/V, -N') (11.2.3)

If m is large, one must be especially careful to either correct for A</> ,.,,, or to work in extremely

dilute solutions.

For solutions dilute enough so that Ac/jj.ff is small, then the emf of the Daniell cell

is given by

/here

For cells of the type

AX
T,

BX

CX
73

BX

ex
l/«

RT
AE-AE +— In

E /_ \l/n("ax y

RT , RT *
AE*-+(—-^ - — Pax

mr m nF n

BX (solid)
AX (/Vx)
AY

BX (solid)
AX (/Vx)
AY

(II.2.B)

(11.2.4)

(II.2.C)

in which BX is very insoluble and for concentrations of solutes low enough so that A0 ,.,, can be

neglected, the emf can be expressed by

RT flAX
AE = In

F *AX

where a' denotes the activity of AX in the left-hand electrode.

(11.2.5)
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At concentrations where A</> ,.,, is negligible and low enough for the limiting laws to apply,

the emf of concentration cells (A) and (C) obey the Nernst equation

and cell (B) will obey the equation

RT NAX
AE = ± — In

nF NAX

vl/nRT (/Vcx )'
AE = AE* + In 2

F /», \\/n
("ax >'

(11.2.6)

(11.2.7)

The validity of Eqs. (6) and (7) are proof of the validity of Eq. (1.2.9) for the solute. Many ex

amples of concentration cells and Daniell cells exist in the literature which illustrate the lim

iting Nernst laws up to concentrations at least as high as 0.5 mole %and often for solutes of

the same valence type to more than 1 mole %. Some examples are AgN03 in NaN03-KN03, '

in NaN03 (Fig. I)70 and in KN03;n AgCI, CoCI2, PbCI2, ZnCI2, NiCI2, CdCI2, TIC], CuCI,

4x10
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CrCI2, MnCI2, FeCI2, and SnCI2 in NaCI-KCI mixtures;47'48 and PtCI2, PdCI2, BiCI3, AgCI,
NiCI2, CuCI, PbCI2, FeCI2, CdCI2, and TICI in LiCI-KCI mixtures.82 From cells of type (C)
the Nernst law, with silver solid-silver-halide electrodes, has been demonstrated for KCI in

LiN03-KN03,22 KBr and Kl in KN03 and in NaN03-KN03 mixtures.25
These illustrations indicate that for mixtures with a common anion the solvents obey Raoult's

law and the solute obeys Henry's law in dilute solutions,* even for solutes with polyvalent cat

ions. The high concentrations of charges in a molten salt, composed of monovalent ions, appar

ently swamps out or partially cancels the high local-charge density of a given polyvalent cation

and, in a sense, the solvent must behave like a medium of very high dielectric constant in cases

where the solution contains only one anion. These cases in dilute solutions also indicate that

the effect of any "holes" introduced into the solvent by the addition of polyvalent cations is

suppressed by the presence of "holes" in the solvent. Although a molten salt seems to be a

highly concentrated ionic solution if the solvent ions are included, the effects of the solvent

on the ionic solutes having a common anion seem to be such as to make the properties of these

solutions simpler in less dilute solutions, than is the case with water or other non-electrolytes

as a solvent for salts. Similar checks of the limiting laws for ionic solvents containing poly

valent ions are unavailable. Although measurements do not appear to lead to results of interest

in fairly dilute solutions, measurements in concentrated solutions are of more interest.

11.3 Strongly Ionic Salts Containing Monovalent Cations and a Common Anion

The most revealing experimental work on mixtures of salts with monovalent ions are the

calorimetric measurements of the molar enthalpies of mixing of the alkali nitrates by Kleppa,

and Kleppa and Hersh. Although the alkali nitrates cannot be considered as good a prototype

of an ionic salt as the alkali halides, they are analogous to the alkali halides.

The molar enthalpy of mixing of two salts 1 and 2 is given by

AHm - A/,(H, - tf°) +N2(H2 - H\) , (11.3.1)

where H. and H2 are the partial molar enthalpies of components 1 and 2. Enthalpies of mixing of

all of the ten possible mixtures of alkali nitrates were reported with measurements for seven of

the mixtures being reported in detail. In Figs. 2—4 are plotted some typical data for AH and

AH /N ,N~. The data may be represented by the expression

Hm-N]N2(a + bN]+cN]N2) . (11.3.2)

In Table 2 a summary of the values of a, b, and c representing the data is given.

All of the observed enthalpies of mixing in mixtures of alkali nitrates are negative and are

more negative the greater the separation of the two alkali metals in the periodic system (and

*Molality is about an order of magnitude larger than mole or ion fraction in these cases. By standards used
for aqueous solutions, these are concentrated solutions.
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also the greater the difference in size of the two cations). In all the systems an energetic

asymmetry in the enthalpies of mixing is present so that for a given pair of nitrates, the value

of AH is more neqative in a mixture dilute in the larqe-cation nitrate than in a mixture dilute
m ^ "

in the small-cation nitrate. The parameter & is a measure of the energetic asymmetry. Assum

ing that the form of Eq. (2) is correct, then the partial molar enthalpies are given by

tf, - H° = (a +2b - c)N22 +(4c - 2b)N\ - 3cN4 ,

H2- H°2 = (a - b- c)N2 +(2b +4c)n] - 3cN4 ,

(11.3.3)

(11.3.4)

at N2 = 1, H1 - W1 = a, and N, = 1, H2 - H2 = (a + b), where component 1 has a smaller cation
than component 2. Since both the a and the b are negative, the partial molar enthalpy of solu

tion can be seen to be asymmetric. Only for systems in which the absolute value of AH is

small does it appear that the parameter c is negligible and that the term containing the concen

trations to the fourth power are not necessary to represent the data.
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Kleppa, by using the enthalpy of mixing of 50-50 mixtures of the nitrates as a measure of the

magnitude of the effect, demonstrated the empirical relation

o -.4\H

dy-d22

d. + d2
U82 - -140S2 , (11.3.5)

where 8 = (d^ - d2)/(d^ + d2), and af. is the sum of the radii of the cation and anion indicated,
and U is about -140 kcal. The value of U is about the same magnitude as the lattice energy of
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the alkali nitrates. The results of Kleppa may be rationalized in terms of simple concepts. Since

the simplest binary mixtures are those containing monovalent cations and anions, simple solution

theories are more likely to apply to these mixtures than to mixtures containing polyvalent ions.

Although some of the relations discussed below will be naive, they will serve the main ob

jective of this discussion, which is to relate the solution behavior of molten salts to fundamental

physical laws.

As discussed in a previous section, a molten salt may be compared to a quasi-lattice. Be

cause of the alternation of charge, the quasi-lattice consists of two sublattices, one of cations,

and the other of anions which interlock so that the anions have cations as nearest neighbors and

the cations have anions as nearest neighbors. For a mixture of salts with a common anion, the

cation sublattice may be considered as being imbedded in a sea of anions. The anions are not

excluded from consideration, since the cation environment of a given anion will greatly affect

its relative position and energy. Since the solute and solvent in a mixture both have the same

anions as nearest neighbors as they do in the pure state, any solution effects are caused by

ions further away although these ions further away may, indirectly, affect the nearest-neighbor

anions.
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Table 2. A Summary of the Parameters a, b, and c Derived from the Heat of Mixing Data
for Binary Nitrate Systems

System T (°C) a (cal/mole) b (cal/mole) c (cal/mole)

(Li-Na)N03 345 -464 -11.5 ~0

(Li-K)N03 345 -1759 -87 -463

(Li-Rb)N03 345 -2471 -178 -945

(Li-Cs)N03 450 (- 3000)a

(Na-K)N03 345-450 -408.5 -68 ~0

(Na-Rb)N03 345 -744.5 -268 -36

(Na-Cs)N03 450 -1041 -435 -93

(K-Rb)N03 345 (-60)

(K-Cs)N03 450 -89.5 -87.5 ~0

(Rb-Cs)N03 450 (-14)

(Li-Ag)N03 350 702 -108 0

(Na-Ag)N03 350 677 - 156 0

(K-Ag)N03 350 -303 -294 0

(Rb-Ag)N03 350 -944 -337 -297

(Li-TI)N03 350 -901 178 -294

(Na-TI)N03 350 131 241 ~0

(K-TI)N03 350 447 -17 ~0

(Rb-TI)N03 350 240 -15 ~0

Parentheses indicate uncertain data.

Molten-salts solutions differ from solid-salt solutions in an important respect. In order to

place a large cation in solution in a solid salt having a small cation the structure near the for

eign cation must be distorted. In a solid, such a distortion is difficult as evidenced by the

rigidity of the lattice. Although there is some ability of the ions in a solid to adjust their

positions to minimize the energy, the net effect is that the enthalpy of mixing of ionic solids

is positive, and there is a strong tendency for ionic solids having a common anion to be mutu

ally insoluble if the cations are very different in size. The structures of molten salts are much

less rigid, and the salt can easily accommodate cations of different size.

The theory which can most easily be applied to mixtures of molten salts with monovalent ions

is the quasi-chemical theory of Guggenheim63 which is based on a quasi-lattice model. Since it

may safely be assumed that cations almost exclusively have anions as nearest neighbors in a solu

tion containing only one kind of anion, all the nearest neighbors of the cations will be the same as

in the pure salts, and solution effects will be caused by ions further away than nearest nieghbors.

The nearest cation neighbors which are next nearest neighbors in the salt quasi-lattice might be

considered as a first approximation.
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If salt 1 is AX and salt 2 is BX, then the potential energy of the ion triplet A X-A may be

designated by V1 lf of B X~ B by V22 and of A X-B by V12. To validly apply the quasi-

chemical theory to the model, V1 1( V22, and V,2 must be assumed independent of the local
environment of the ionic triplets. Although this assumption is not correct, it may serve as an

initial working hypothesis. The molar excess free energy of solution and molar heat of mixing

of solution as calculated from the quasi-chemical theory will be given by

AAE

RT

m

RT

N}N2 A(l - N,N
Z'RT

2A

N.N,A 1 - N,N. +
1 2 V ] 2 Z'RT

(11.3.6)

(11.3.7)

where A« (\i Z'/2) (2V.2 —V.. —V22) « UZ'Ae '/2, U is Avogadro's number, and Z' is the
number of cation next-nearest neighbors of a cation.

Fjrfrland ' has discussed the quantity (2V12 - Vy, —V22) = Ae' in terms of the change of

the repulsions of next-nearest-neighbor cations. FjoVland represents the configuration of next-

nearest-neighbor cations and a nearest-neighbor anion as in Fig. 5 and calculates the Coulombic

energy change, Ae , for mixing the cations in these two arrays of three hard spherical ions.

Ae - -e'
c

1 1

^J2
2

d^ + d2
(11.3.8)

where e is the electronic charge. The term —e [(1/^j) + (]/d2)], for a real ionic salt, can be re
lated to the average lattice energy of the two salts composing the mixture and is analogous to the

A

-2

+
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\r-d2-Jrdr

Fig. 5. Configuration of Ions for the Calculation of FoVland on the Change
of Repulsions of Next-Nearest Neighbors.
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empirical parameter U in Eq. (5). Ae is always negative and tends to be more negative the

greater the differences in the cationic radii. Except for small factors the form of Eq. (8) is ob

viously related to the empirical relation (5).

Blander has extended F^Hand's calculations to a hypothetical salt mixture which is ex

tremely dilute in one component and which is represented by an infinite linear array of hard-

charged spheres. Although this model is unrealistic for a real three-dimensional salt, it does

serve to assess the effect of Coulombic interactions of longer range than the next-nearest neigh

bors. The inset of Fig. 6 is a picture of a portion of the solution of one mole of the solute with

an interionic distance d2 in an infinite amount of solute. In Fig. 6 are plotted calculated values

of —Ae dy/e vs A, where d2 = dS\ + A), and where Ae is the energy of mixing per molecule

of solute. The values of Ae are always negative and become more negative the greater the value

of A and are only about 0.4 times the magnitude of the values calculated from FoVland's simple

model. If the mutual dissolution of two salts 1 and 2 where salt 1 has the smaller cation is con

sidered, then Blander's calculation indicates that a dilute solution of 2 in 1 will lead to a more

negative value of Ae than for a dilute solution of 1 in 2. Since FoVland's calculation predicts

a symmetry in the energy of mixing, the effect of the long-range interactions is to decrease the

total calculated value of | Ae | and to lead to a small asymmetry in the energy of solution. The

asymmetry effect means that the parameter A cannot be independent of composition.
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Care must be taken not to ascribe the observed negative deviations from ideal solution be

havior or an asymmetry to only Coulombic effects. For example, polarization may also con

tribute to the energy of solution. The ions in the solid-like linear model for the pure salt have

no field on them, but in the mixture represented in the inset of Fig. 6 there is an appreciable

field intensity on some of the ions which can polarize the ions.

Lumsden has calculated the effect of polarization of the anions by the cations in terms of

a one-dimensional model essentially including only nearest-neighbor and next-nearest-neighbor

ions. He obtained the relation

aE2 , / 1 1 \4 jd, -d,\2
Ae . K_ae2( —+ -) (-J 2.) , (11.3.9)

" 2 V^ 1 d2 J \ d, d2

where E is the field intensity on an anion between two cations of different size, and a is the po-

larizability of the anion. Polarization of cations, which may not be small, has been neglected.

Equation (9) is the same form as (5) and (8), and Ae is negative so that it should be difficult

to separate the purely Coulomb interactions from polarization interactions without a valid calcu

lation of the relative magnitude of these two interactions. However, any simple extension such as

was made by Lumsden to three dimensions of a one-dimensional model for either the Coulomb

or polarization interactions may lead to misleading values for their relative magnitudes.

If the solute in Fig. 6 is salt 2 in the solvent 1 where cation 2 is larger than 1, then the field

intensity on the anions adjacent to the solute cation is greater than if the solute is salt 1 and the

solvent salt 2. For polarizable anions, this would make the energy of mixing more negative and

contribute to the asymmetry effect. If thermal motions are considered, then the tendency of ions

to reside longer in regions of high field intensity will also contribute to the asymmetry being in

a sense a "positional" polarization. If these simple considerations are valid for a real three-

dimensional salt, then at least part of the asymmetry effect is related not only to Coulombic

but also to polarization interactions by ions more distant than next-nearest neighbors. In any

theory of molten-salt mixtures it appears to be necessary, then, to include long-range interac

tions, except under very special conditions.

The comparison of the measurements with the concepts discussed is straightforward. As

discussed, the parameter A for a molten salt in (7) is not independent of composition and

Kleppa has approximated the effective value of A as a linear function of composition.

k-a'+b'N} , (11.3.10)

so that for values of —A small relative to Z'RT, Eq. (7) becomes

AHm = N,N2(«'+fc'N1) , (11.3.11)

which is the form of the experimental results in the three systems studied by Kleppa which ex

hibit the smallest deviations from ideal solution behavior.
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For values of -A not too small, Eqs. (7) and (10) lead to

hb'N,)2]
(11.3.12)AW =N,N0

m 1 2

(a'+b'N,)2
a'+b'N}- 2N,N2 !—

Z'RT

Comparison with Eq. (11.3.2) shows that c can be identified with -2A /Z'RT. The precision of

the measurements is not high enough to detect a change of c with composition. By using an

average value of A,

A = a + b/2 ,

as a measure of A, Kleppa showed that a plot of c vs A. /RT for the systems (Na-Rb)N03, (Na-
Cs)N03, (Li-K)N03, and (Li-Rb)N03 is consistent with a reasonable range of values of Z' of
10 to 12. This is the number of next-nearest neighbors in an NaCI type lattice and is only a

small variance with the number of next-nearest neighbors in some molten alkali halides.

Equation (11.3.11) corresponds to the random mixing of the cations on the cation sublattice.

The presence of the c term, if A varies linearly with composition, implied an appreciable non-

random mixing of the cations, and c was termed a short-range order parameter by Kleppa.

It should be made clear that although the results of Kleppa have been rationalized in terms

of the modified quasi-chemical theory, a fundamental premise of the quasi-chemical theory is

that A is independent of composition. Consequently, the form of the theoretical equations de

rived, based upon the quasi-chemical theory, although in correspondence with the empirical

Eq. (2), requires a sounder theoretical justification.

A justification of the form of the empirical Eq. (2) has been made by the methods in the

elegant work of Reiss, Katz, and Kleppa. ° They used a method, which is essentially an
adaptation of the theory of conformal solutions, in which no model is used. The derivation

was made for ions behaving as hard-charged spheres with a sum of radii equal to d so that the

pair potential

u(r)=oo, r<d, (11.3.13a)

x ±Ze2
u(r)= , r>d, (11.3.13b)

where r is the distance between the two ions in any given pair, and k is a dielectric constant

which is assumed constant for a set of salts with a common anion. The potential function can

be generalized to the form for a monovalent salt

1
u(r) = ±-f(r/d) , r>d. (11.3.14)

d

This is a less-stringent condition than (13b). Because of the relative rarity of anion-anion con

tacts (except in salts as LiI), or cation-cation contacts, the contribution to the configurational

integral of configurations in which ions of the same charge are touching (or almost touching) is

very small and is neglected. As a consequence, except in these rare configurations, the total
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contribution to the potential energy of a given configuration due to cation-cation or anion-anion

interactions is independent of small differences in the cation size, and only one parameter of

length d for the sum of the radii of a cation-anion pair is necessary for the description of a

pure salt. For a mixture of salts, two parameters are necessary, d. and d2.
In the derivation of the theory, a single-component reference salt with the single parameter

of length d is transformed into either component 1 or 2 by varying d. If g. = d/d. where i = 1 or

2, then the configuration integral for the pure salt i is

//» -BU.

z,., zfe,) . I... I -—5-Wt)2» , (11.3.15)

where (/. is the potential energy of the 2n ions (n cations + n anions). Since the cation-anion

pair potential is

«I-W-T/C-f)=«,-a(g|.r), (11.3.16)
d. \d ,

i x i'

then the total potential

^=f fgfaAcM +fJ^AA'+^pcc'' (H-3.17)

where A represents anions, C cations, and the symbols A < A'ond C < C signify that the pair

potentials are added in a manner so that no pair is counted more than once. The molar Helm-

holtz free energy,* A. for pure salt i can be expressed as a series

~irln z*=ln z(g-}=(ln z)*=i +{gi ~1} (-r^)
(g _ 1)2 /32 |nZx

+-fJ f +..., (H.3.18)
%2

' ' s,-_= 1

*Only the configurational part of the partition function is treated here. In calculations concerning changes
upon mixing, the translational" part drops out and may be neglected. Although the equations that follow
were derived for hard sphere ions which interact with a generalized form of the Coulomb potential, the same
equations may be derived for more general potential functions. If the core repulsions of a cation-anion pair
are of the form f(g.r) (a special case of this form is the hard-sphere repulsion) and if the other interionic in
teractions in the system are such that for any given geometric configuration of the ions, the permutations of
the two types of cations over all the cation positions do not lead to a change of the contribution of these
other interactions to the total potential of the system, then the equations derived will be the same as the
equations to be derived LEqs. (23—27)J with different values of c/>, _ in the integrals which are contained in
the coefficients. Types of interaction which would be included in this category are not only Coulomb inter
actions but also cation charge-anion multipole interactions and,for the cases in which the two cations have
relatively small or equal polarizabilities, all other charge-multipole and multipole-multipole interactions.
Salt mixtures which conform to this might be termed conformal ionic mixtures.
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where Z(g.) has been expanded about g. = 1. Similarly, for a mixture of 1 and 2 the potential

energy is given by

- (N,«) - (N2n) - -
^12=2 2 g1"AC(g,r)+2 c2 g2"AC(§2r)+2 <|,«AA'

(N2n) (N2n)(N,n) (N,n)
+ 2 2 Mr r' + 2 2«rr'+2 2"rrC, < C, Ll'-1 C2 < C2 u2<-2 C, C2 l"ll-2

(N,n) (N2n)

and Z is given by

-Bt7
12

Z' - •^12 -
b!

nlS! //- (n!)2
•(dr] 2n

«!

«,!b2!
Z(g),g2)

and the Helmholtz free energy for one mole is

M2

kT <lnZ>.1..,-l +fel-1>:,,«2

d In Z
+ (g2 - D

d In Z

(g,- l)2 /d2 lnZ\ (g2-D2 /<32 InZ

1 /gl.82=l •8l=l;l'g2

(11.3.19)

.3.20)

+ (g1-D(g2-1)
d2 In Z

dg}dg
+ ...+ 2N.Uln N. . (11.3.21)

2Al'82=1

The appropriate derivatives of Eqs. (15) and (20) were used to evaluate the first and second de

rivatives of In Z contained in Eqs. (18) and (21). The values of A1# A2, and A12 thus obtained

were used to calculate the total excess Helmholtz free energy of mixing of N, moles of component

1 with N2 moles of component 2 to form one mole of mixture

AAm = A12 - Nl Al ~ N2A2 - RTSN1 In N, .

The first order terms cancel and the second order terms lead to

AAE =N,N0
m ' 2 2ZkT

n3£ + n3(n - l)c
a2n4 d, —d~

d^ d2

where Z, e, a>, and a are related to the integrals characteristic of the "test" salt

/-/
-BU mj2b(dT)'

(n\)2

^AC^AC'

J" J (n(n!)2
>-BU(dT)2"

(11.3.22)
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0AC<£. '-'AC^A'C
e-BU(^r)2" ,

(n\)2

where <£AC = u.- + r(du^~/dr) and a prime on A or C means that the integration is for two dif
ferent anions or cations. From (22) it was shown that

d. —

AA^ = N.N-r(T,V) , , + ..., (H.3.23)
d^ d2

d, — d„

\d2
AG* =N,N7d(T,p){ d d ) +..., (11.3.24)

and

d} -d2 2

AHm =N}N2 fl (T,p) I———J +..., (M.3.25)

where T, 6, and fl are functions characteristic of a single "test" salt. The influence of the factor

(d.d2) on the thermodynamic excess functions is much weaker than the influence of the factor
(dy —d2) . As a consequence, the form of Eqs. (23), (24), and (25) is similar to that implied by
Eqs. (8) and (9) and is consistent with the empirical relation (5).

The higher order terms in the theory of Reiss, Katz, and Kleppa were complicated. The higher

order terms are simplified by the choice of particular relative values of the perturbation param

eters g. and g2 so that (g, —1) = —(g2 —1). This condition implies that for each particular
mixture a 'test" salt is chosen. The calculations lead to the result

AAE =N}N2 P82 +N}N2(N} - N2)Q83 +[N}N2R +N}N2(N, - N2)2S]84 +... , (11.3.26)

where

P 1 /S2 nD

kT 2 \Z2 Z

Q (n2F n2BD B3
__—-4

kT \ 6Z 2Z2 3Z-

R and S are complicated functions,

d\ ~d2

d. + d-

B=-Bra2a,

D = B2n2[e+ (n - l)to] ,
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E =-

(«!)2

+3(*-l) /.../^ac0ac^a'C^.«-BU(^2»

+(« - 1) (« - 2)/.•.y* <£AC 0A 'C ' <£A "c ».e-BU (dT)
P, Q, R, and S are characteristic properties of the test salt. In a similar fashion, the heat of

mixing may be shown to be

AHm =N,N2P'S2 +N1N2(N1 - N2)Q'83 +[N]N2R'+ N^N2(N} - N2)2S']84 +... , (11.3.27)

where the prime signifies the proper temperature derivative of the primed quantity. The form of

Eq. (27) is seen to be consistent with (2) if a = P'82 - Q'83 + R'84 + S'84 , b= 2Q'83, and
c =-45^5 . This constitutes proof that the form of Eq. (2) is consistent with rigorous theory.

The methods of Reiss, Katz, and Kleppa may thus be used to support in a rigorous manner the

form of the empirical Eqs. (2) and (5), as well as the approximate form of Eqs. (8) and (9) which

had been derived on an intuitive basis.

Powers, Katz, and Kleppa ' ° have measured volume changes of mixing of several com

positions of each of the binary alkali-nitrate mixtures (Na-K)N03, (Na-Li)N03, (Na-Rb)N03, and
(Na-Cs)N03. The average values of the quantity AVE/N ^N2 are listed below:

Mixture Temperature (°C) AvB/N ]N2 (cmVmole)

(Na-K)N03 350 0.26 ± 0.08
425 0.28+0.08

(Na-Li)N03 310 0.26 ±0.02

(Na-Rb)N03 340 0.82 10.10

(Na-Cs)N03 425 1.37+0.12

All of these volume changes are positive and obey the approximate equation

AVE =N}N2V84 ,

where V = 22,000 cm /mole. These positive deviations from the additivity of the molar vol

umes, significantly, are found in mixtures in which the heats of mixing are negative. No satis

factory theory has been proposed for this.

The only data on activities in mixtures of alkali halides with a common anion has been ob

tained from cryoscopy. Unfortunately such data is not isothermal and uncertainties in the phase

diagram and in the heats of fusion as well as the necessity for precise measurement of liquidus

temperatures to obtain reasonable values of the excess free energies reduce the value of this

source of information. The component LiF in mixtures of LiF-KF, LiF-RbF, and LiF-CsF3,36

exhibit negative deviations from ideal solution behavior, which are more negative (the activity

coefficients are smaller) the larger the difference between the sizes of the two cations. The

28
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same is true for the component LiCI in mixtures with KCI, RbCI, and CsCI. This appears

to be in accord with the ideas presented in section (11.3). However, the work of Cantor on

cryoscopy of NaF in mixtures with KF, RbF, and CsF have indicated that there is a small

positive excess free energy which becomes more positive in the order KF < RbF < CsF. Since

purely Coulomb or polarization interactions would be expected to always lead to negative de

viations from ideal solution behavior, it is clear then that even in mixtures of the highly ionic

alkali halides other types of interactions are important. In the next section we will show that

these interactions may be, at least in part, related to the dispersion interactions of the solute

cations. Some discussion of this for alkali halides has been made.

11.4 Mixtures Containing Polarizable Cations and a Common Anion

In order to separate the various physical interactions which are significant in determining the

solution behavior of molten salts, it is advantageous to compare two different mixtures of salts in

which the major difference in the solution properties can be related to the differences in the prop

erties of one ion. As an example, mixtures of alkali nitrates with silver or thallous nitrates would

be suitable for such a comparison with mixtures containing only alkali nitrates, since the differ

ence in the properties of Ag and Tl ions from those of Na and Rb is largely related to the rel

atively high polarizabilities of Ag and Tl . » 05

Kleppa has measured the heats of mixing of AgN03 and TINCL with all of the alkali nitrates

except CsN03. * By fitting his data to equation (11.3.2), where N. is the mole fraction of
either AgN03 or TlN03, Kleppa obtained the values of the parameters a, b, and c which are listed

in Table 2. The observed deviations from ideal solution behavior differ from those of the corre

sponding mixtures of alkali nitrates with NaN03 or RbN03. In addition to the interactions present

in mixtures of alkali nitrates, an additional interaction needs to be postulated to rationalize the ob

served results. This difference has been shown to be in reasonable agreement with a calculation

of the London dispersion energy of interaction of next-nearest neighbors. The predominant term

of the London dispersion interaction energy between two ions is the dipole-dipole term,

ul{~S'6'c\l+/d6 , (11.4.1)

where S''\s a constant probably in the range of 1 to 2 and depends on the structure of the melt,

d for a pure salt is the cation-anion distance with the cation-cation distance assumed propor

tional to d, and d for a mixture is an average cation-anion distance. The paramater C++ is given

by101

3 a, a, 1,1,
, ; k i k i

Ckl (II 4 2)C++_2 ^ , (I..4.2)

*lt should be noted that although the Pauling radius of Ag ion is 1.26 A, the interionic distances in
AgCI and AgBr and the relative molar volumes of liquid AgN03 and NaN03 are more consistent with a
radius of about 0.95 A which is close to that of Na .
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where k and / are the two cations, a is the polarizability of an ion, and / has been estimated101

for the alkali cations, Tl and Ag+. Values of a and / are listed in Table 3. A calculation of

the contributions of this interaction, Ail +B, was approximated from the dispersion energy change
represented crudely by the process AXA + BXB -» 2AXB,

A<JAB = 2f7AB - t/AA - UB+B , (11.4.3)

where the solutes are AX and BX, where S" - 1.8, and where 2d^ = cfAA + d * Equation
(11.4.3) is an approximation to the contribution to AH°^5/N ^N2 so that the relation for molten
nitrates (11.3.5) is modified to become

A= 4Atf0-5 = US2 + AUAB . (11.4.4)

The value of U = —140 for alkali nitrates includes a small positive contribution from van der Waals'

interactions so that a correction is needed which will make A(7AB less positive.16 A cruder but

simpler approximation to At/++ may be made in a manner similar to an approximation useful in

nonelectrolyte solution theory.

A</tf - (/^J? -/^?7) \ dl.4.5)
where the values of C++ in Table 3 in conjunction with a value of S'' = 1.8 may be used with Eq.

(5) and ionic radii for roughly estimating A(7AB. From Table 3 it can be seen that C++ will be
quite large for Cs , Rb , and K ions and the positive term, A(/AB, in (4) may be large enough
to cancel the negative values of US for mixtures of, for example, NaF with KF, RbF or CsF.

The calculations of Lumsden are in accord with this and this may be used to rationalize the

*A better approximation for dAB is [(d^ +dB)/2] ' , which differs little from {dA +dQ)/2 when d. is
not very different from dR. The factor for S& contains a small correction for interactions of longer range
than next-nearest neighbors.

Table 3. Polarizability and Potential Parameter Used for Estimating
Cation-Cation van der Waals' Interaction

Ion
a x 1024 Zx 1012

3

(cm ) (ergs/molecule)

Li+ 0.030 90.9

Na+ 0.182 56.8

K+ 0.844 38.2

Rb+ 1.42 33.0

Cs+ 2.45 39.0

Ag+ 1.72 30.0

Tl+ 3.50 30.0
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results of Cantor mentioned at the end of the previous section. However all of these methods

are approximate and are useful largely for semiquantitative estimates of solution behavior.

Laity83 has shown that A0d.ff is negligible in the cell

Ag
AgN03(N;)
NaNO,

and the emf of this cell is given by

AgN03(N,)
NaNO,

AE = RT In («/«{)

The measurements are consistent with the expression

/*f =840 N2 ,

Ag

(11.4.6)

where 1 is AgN03 and 2 is NaN03. The results did not exhibit the asymmetry in the heats of
mixing found by Kleppa for the same system. Although the total excess entropy is small rela

tive to the total entropy of mixing, it is negative and is not small relative to AW or AG ;

T.AS1 AH AGE = (-156N, - 163) N^2 ,

so that although Eq. (6) has the form for regular solutions the excess entropy does not appear

to be negligibly small.

There have been many studies of mixtures of silver halides and alkali halides using the

formation cell

Ag
AgX

MX
X. (p - 1 atm) graphite,

where M is an alkali metal ion and X is a halide. The emf of this cell can be related to the

activity of AgX by

.0 ate c0H} - n"^-F(E - Eu) =RT In
'1 ' (11.4.7)

where 1 is AgX.

The most extensive work on these systems has been the work of Hildebrand and Salstrom

who studied mixtures of AgBr with LiBr, NaBr, KBr, and RbBr.66,116«' 17 In Fig. 7 are plotted
values of p.E for AgBr (component 1) vs N2. Within the experimental precision, ju1 is independent
of temperature and can be represented by the equation

E =AN2Ml 2 *
(11.4.8)

Values of A are given in the table below and may be rationalized in terms of Eq. (4) using the

data in Table 3. Many studies of mixtures of AgCI with alkali chlorides have been made. Unfor

tunately, there are significant differences between different measurements on the same systems.

The most reliable and consistent studies appear to be those of Salstrom and of Panish on

the (Li-Ag)C! and the (Na-Ag)CI systems. Although there is scatter in the high-temperature data
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Volume Change

Mixture A (cal/mole) of 50-50 Mixture

(cm /mole)

(Li-Ag)Br 1880 -0.13

(Na-Ag)Br 1050 + 0.17

(K-Ag)Br - 1480 + 0.27

(Rb-Ag)Br -2580 + 0.42

(Li-Ag)CI 2100

(Na-Ag)CI ~800

1600

UNCLASSIFIED

ORNL-LR-DWG 66348

1200

800

- 400
a
o

0

-400

-800

-1200

0 0.2 0.4 0.6 0.8 1.0

Ni.

Fig. 7. Values of the Excess Chemical Potential of AgBr (Component 1) in

Mixtures with Alkali Bromides.
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of Panish, the results of both Salstrom and of Panish on the AgCI-LiCI system lead to positive

deviations from ideality, which follow, approximately, Eq. (8) with A = 2100 (cal/mole) from 500

to 900°C. Small positive deviations from ideality have been found in the AgCI-NaCI system.

There is too much scatter in the results to be able to represent fiE precisely, but crudely /xE =

800 N2. The work of Stern is consistent with these results.

In all of these chloride systems there is considerable scatter and uncertainty, and it cannot

be clearly shown that the data can be best expressed by an expression as Eq. (8) and that A is

truly independent of temperature.

Measurements of AgCI-KCI mixtures by Stern are doubtful. The measurements of Mur-

gulescu and Sternberg indicate that for AgCI-KCI mixtures

/if =-1555 N2 ,

and that the excess entropy of mixing was nearly zero. However, the values of E observed by

Murgulescu and Sternberg differed from those given by Salstrom, Panish, and Stern by about 9 mv

at 500^.

An interesting comparison with solid solutions is exhibited by Panish. Although the

molten salt system AgCI-NaCI exhibited only small positive deviations from ideality, the

measured deviations from ideality in the solid solutions were more positive. This illustrates

the fact that, aside from other effects, the accommodation of ions of different sizes in a given

material leads to a greater positive (or less negative) free-energy change in a crystal than in

a liquid.

It was pointed out by Hildebrand and Salstrom that the volume change upon mixing of

50-50 mixtures of the four systems containing AgBr, which are listed on page 32, could not

be related to a weakening or strengthening of the interactions of the ions or with the devia

tions from ideality. As with the results on alkali nitrates for AW , the values of A/j^ vary
in a direction opposite in sign to that of AV with variations in the cation.

11.5 Binary Mixtures Containing Polyvalent Ions

Although there has been much experimental work on mixtures containing polyvalent ions, very

little theoretical discussion based on fundamental physical principles has been published. This

section will be devoted to the presentation of thermodynamic data to give the reader an idea of

the magnitudes involved and, where enough data exist, to pointing out the correlation of proper

ties of mixtures with the physical properties of the ions. Where it is considered necessary, a

discussion of the principles of measurements will be included. In the next section, a discussion

of these data and a critique of the description of these data in terms of "complexes" will be made.

Kleppa and Hersh measured the molar heats of mixing of Ca(N03)2 with LiN03, NaN03,
KN03, and RbN03 at 350^. By using a heat of fusion of Ca(N03)2 of5.7 kcal/mole obtained by
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extrapolation of their measurements, the limiting heat of solution of liquid Ca(N0J2 (H*. - H°.
in Table 4) at 350°C obeyed the empirical relation

H ; - H° =0.3 - 225[(r++/2) - (r/DlVU, +d2]2 ,

which relates the radii of the divalent and monovalent cations (r++ and r+) to the observed heats of

mixing. The heats of solution decrease with increasing radius of the alkali cation. It should be

noted that the heat of solution in LiN03 is positive. No simple representation of the concentration
dependence of the molar heat of mixing was made. It was noted, however, that the slope of plots

of AWm/N1[Ca(N03)2 is component 1] vs N} for mixtures with KN03 and RbN03 had maxima at
N, = 0.25-0.33 (or at equivalent fractions Nj =0.4-0.5). The results in these two systems prob
ably can not be represented by an equation with as few terms as (11.3.2).

Table 4. Extrapolated Values of the Limiting Heats

of Solution of Ca(N03)2

Solvent H] - H° (kcal/mole)

LiN03 +0.25

NaN03 -0.9

KN03 -3.0

RbN03 ~4-35

The most extensive comparative studies of binary mixtures containing polyvalent ions have

been the cryoscopic measurements of Cantor,30,3 1<34 who measured the freezing point lowering
of NaF by polyvalent salts. NaF can be considered as a prototype of an ionic salt. In Fig. 8

are plotted the liquidus temperatures of NaF (component 1) in mixtures with the alkaline earth

fluorides. The upper line is the calculated liquidus temperature for an ideal solution with the

data contained in Table 1. For an ideal solution at the liquidus

idea Ia, =N1 - n 1

and the activity coefficient in a real solution is given by

xiidea I

at the liquidus, where N'^"' and N] are the compositions of NaF in the ideal and real solu
tions respectively at the same temperature. A freezing point lower than the ideal value means

that y1 < 1 so that the solutions all exhibit negative deviations from ideality. The smaller the
radius of the alkaline earth the greater the deviations from ideality.

The Ca ion has about the same radius as Na , but the NaF-CaF2 mixture exhibits negative
deviations from ideality. This illustrates the effect of charge. Deviations from ideality in the
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NaF-BaF2 system are small. Since the Ba ion is larger than the Na ion, the large size of
the divalent ion appears to, at least partially, compensate for the greater charge. The excess

free energies of NaF, /xf, at the liquidus temperatures in mixtures with the alkaline earth flu
orides are plotted in Fig. 9 vs N? (where 2 is the solute). (Note that these values of /z, are
not isothermal.) For comparison with monovalent cation salts, data with LiF and KF as solutes

are also plotted. The Li+ ion is about the same size as the Mg ion and both are smaller than
the Na ion. If the LiF and the MgF2 mixtures are compared with NaF, the deviations from

ideality in both appear to be negative, being much more negative in NaF-MgF2 mixtures. On
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the other hand, the K ion is about the same size as the Ba ion, both being larger than the
+ .Na ion. The deviations from ideality of the solvent NaF in mixtures with KF and BaF, are

both small. A further illustration of the influence of charge is shown in Fig. 10, which gives

/i, for NaF in mixtures with CaF2, YF3, and ThF4 in which salts the interionic distances are
about the same. All of these illustrations show that the deviations from ideal solution behavior

are related by a function which appears to be monotonic in the charge of the solute cation, Z,

and in "\/d2, where d2 is the sum of the cation and anion radii of the solute. However, other
effects such as van der Waals' interactions, ligand-field effects on transition metal ions, etc.,

will be superimposed on the effects of charge and radius of the ions. Figure 11 gives a parallel
plot of fi^ at 20 mole %of solute and the lattice energies of the solid solutes MnF2, FeF2, CoF2,
NiF2, and ZnF2. The measured cation-anion distance in solid MgF, is about the same or smaller
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than those of these transition metal ions. The greater negative deviations from ideality found for

mixtures with the transition metal fluorides are therefore not related solely to the radii of the ions.

Since the pattern of the lattice energies with a maximum at NiF2 or CoF2 is explained by ligand-
field theory for octahedral or to tetrahedral symmetry respectively, then the pattern of /z, and

the differences from the NaF-MgF2 system suggest that the change of the ligand-field effect upon
dissolution is related to the deviations from ideality of NaF. Having monovalent ions as next-

nearest neighbors in the mixture, as compared to divalent ions as next-nearest neighbors in the

pure transition metal fluorides, probably leads to a greater ligand field and a great ligand-field

stabilization of the solute component in the mixture than in the pure salt. Whatever the specific

structure of the melt and of the ligands about the transition metal ion, it is apparent that the

effect of the ligand-field stabilization on the solvent is in the same order as might be expected

from ligand-field theory for the solute.



740

- 720

>-

rr
UJ

UJ
o

O
en

UJ
_)

O

o
CM

700

680

660

500

450

400

350

l

300

38

UNCLASSIFIED

ORNL-LR-DWG 67576

S*
**

S"
**•

** '

**
^

^
^

«*•-

S*
**•

S*

*"

*s
s"

^
^

S*
/ ^"

/ S"
/ *"*

/ *"
(^

,-—

^

">

y
y

y
y

y

y
y

y
y

y

y
y

y

y
y

y
y

y
y

/ y

/ y

y

MnF„ FeF, CoF„ IMiF, CuF2 ZnF2

SOLUTE

Fig. 11. Parallel Plot of the Lattice Energies of Some Transition Metal

Fluorides and the Excess Chemical Potential of NaF in Mixtures with Transi
tion Metal Fluorides.

Cantor has also made cryoscopic measurements on NaF with ZrF,, HfF,, ThF., and UF.
4' 4' 4' 4

as solutes. In Fig. 12 are plotted values of \iE vs N2 at the liquidus for these four mixtures. The
deviations from ideality are all more negative than those for the alkaline earth fluorides which fur

ther illustrates the effect of charge. The effect of radius appears to be reversed for these tetra-

valent salts, since Zr which has the smallest radius also has the smallest negative deviation
from ideality. The cause of this is not clear, although steric hindrance related to anion-anion

contacts in the coordination shell adjacent to the tetravalent ion has been suggested as a limit
ing factor. Thus any tendency by a tetravalent ion to have a high coordination number might
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be sterically limited for ions as small as Zr and this might limit the magnitude of the devia

tions from ideal solution behavior.

Another comparative study including polyvalent ions covering a relatively broad range of con-

centrations wasthe emf measurements by Yang and Hudson by use of cells of the type

MCI
n

(LiCI-KCI eutectic)
M CI.

For M= Pb2+, Cd2+, Zn2+, Mg2+, Be2+, activities were calculated from the relation

H, -fi° =-NE(E - E°) =RT In a, .

In the five systems measured, the deviations from ideality were always negative (y1 < 1). In
Table 5 are given values of (p.E/N2) at 800°K calculated from the measurements in the most dilute
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solutions of the solute (component 1) with values of E contained in Table 6 for the calculations.

Except for ZnCI2, the values of (n^/N2) are more negative the smaller the radius of the divalent
ion. These quantities in addition to the influence of radius are influenced by other factors which

are probably significant for polarizable cations such as Zn2+, Cd2+, and Pb2+. It should be noted

that the measurements of Takahashi 6 differ from those of Yang and Hudson on mixtures of PbCL
with the LiCI-KCl eutectic mixtures.

Another series of comparative studies of molten-salt mixtures was made by Lantratov and Ala-

byshev by using the cell

M,
M,CI2

M„C!
CI

2 '

where M; = Pb , Cd , and Zn2+ and M;/ are alkali and alkaline earth metals. They were able to
observe the effect of a change in the diluting chloride M..CI on the activity of M.CL. In Fig. 13

values of ^, at 500"C for PbCI2 in mixtures with LiCI, NaCI, KCI, and BaCI2; at 600°C for
CdCI2 in mixtures with NaCI, KCI, and BaCI2; and at 500°C for ZnCL in mixtures with NaCI,
KCI, and BaCI2, are plotted vs the square of the mole fraction of the other component.

Table 5. Values of (fi./Nj) in Dilute Solutions of Divalent Chlorides
in the LiCI-KCl Eutectic Mixture

Solute

PbCI2

CdCI2

ZnCI2

MgCI2

BeCU

(ftf/N^)

- 1,410

-4,620

-8,650

-8,150

-14,680

0.984

0.993

0.984

0.986

0.998

Table 6. Values of the Parameters in the Equation E = a + bT(°C),
Where E° is the EMF of the Cell M/MCI /CL ( P= 1atm)

n 2

Salt a bx 104 References

AgCI 1.0461 -2.92 116

PbCI2 1.5855 -6.25 131

CdCI2 1.7188 -6.29 89

ZnCI2 1.9200 -6.95 131

MgCI2 2.9823 -6.73 89

BeCI2 2.6205 -8.60 133

PbBr2 1.424 -7.4 86, 115
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Fig. 13. Excess Chemical Potentials of CdCL, PdClj, and ZnCI2 in Mix
tures with Other Chlorides as Obtained from EMF Measurements.

The values of E° at 600^ used by Lantratov and Alabyshev were 1.4987 v for ZnCI2, 1.3382
for CdCL, and 1.2215 for PbCI2, which are -4.3, -3.2, and 11.0 mv different from the values cal
culated by using the data in Table 6. Because of these differences in E , the values in /^ must

be considered uncertain by about 200 cal. Discrepancies in values of E reported by different

workers are common and are probably related to the solubility of metals in their own pure salts.

In Table 7 are given values of y, at 600°C and values of the total volume change per mole of
mixture, AV, at N, = 0.5. With an increase in the size of the alkali cation in mixtures with

alkali chlorides values of y, decrease and values of AV increase. These relative variations

in the deviations from ideal solution behavior and volume changes are in the same direction as

was observed in alkali nitrates and in mixtures of AgBr with alkali bromides. As in the meas

urements of Yang and Hudson, mixtures of alkali halides with ZnClj, CdCI2, and PbCI2 exhibit

less negative deviations from ideal solution behavior in that order

(>'znCI2<>'cdCI2<>'PbCI2and'iZnCI2<'iCtiCI2<'ZPbCI2)-

Values of jj.e at 589^ from measurements in the PbBr2-KBr86 system are more negative than
those in the PbCI2-KCI system (E values for PbBr2 given in Table 6) but differ appreciably
from the measurements of Reid in the same system.
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Table 7. Values of y. and Molar Volumes of Mixing in Equimolar Binary Mixtures of Chlorides at 600°C

Diluent

PbCI2 CdCI2 ZnCI2

Y\ AV (cm3/mole) Y\ AV (cmVmole)
y\ AV (cm3/mole)

LiCI 1.06fl + 0.396 -0.053c

NaCI 0.86 + 1.19 0.68 + 0.20 0.41 -1.38

KCI 0.46 + 1.66 0.36 + 0.97 0.19 + 0.35

CaClj 1.25

BaCI2 0.95 -0.43rf 0.84 -1.85 0.58 -2.63

XiC, = 0.466.

X.C. = 0.428.

XiCI = 0.428.

dNa _. =0.4, T = 650°C.

Senderoff, Mellors, and Bretz measured the activities of CeCL in cells

CeCI3(N.
MCI(N,)

CI
2 '

where M= Na or K. In Fig. 14 are plotted values of fiE vs N2 at 800°C for CeCL in mixtures

with NaCI and with KCI. At low concentrations the excess entropy of solution appeared to be

negative. However, the large scatter in the experimental results indicated in Fig. 14 makes any

quantitative conclusions uncertain. It is apparent that the CeCL is stabilized considerably by

dissolution in both NaCI and KCI with KCI having a larger effect.

Measurements have been made of the activities of the divalent chlorides in PbCL-KCI mix

tures,67 PbCI2 mixtures with LiCI, NaCI, KCI, and RbCI,98 MgCI2 mixtures with LiCI, NaCI,
KCI, RbCI, 10° ZnCI2-RbCI,97 and BeCl2-NaCI98 - and have been reviewed.96,99 Since these
measurements were made by generating chlorine by electrolysis within the cell itself, the state

of the chlorine gas is undefined and the E usually differed from those which are given in Table

6. The activity coefficients did follow the expected relative order (that is, for a given divalent

chloride they decreased with an increase in size of the alkali cation), but the absolute values

are probably unreliable.

The measurements of Laitinen and Liu and of Flengas and Ingraham47,48 provide another
comparative study of the effect of alkali halide solvents on solutes. They used a cell

M
MCIn(N,)

(LiCI-KCl eutectic)

PtCI2(N2)

(LiCI-KCl eutectic)
Pt (II.5.A)
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Fig. 14. Excess Chemical Potential of CeCI, in Mixtures with NaCI and

KCI as Obtained from EMF Measurements.

in which the solutes PtCL and MCI were shown to be dilute enough to obey the Nernst equation,

AEA = AEA In '
1/n

F (N,)1/2

By adding AE. to AE_, obtained from the cell

Pt
PtCI2(N2)
(LiCI-KCl eutectic)

(LiCI-KCl eutectic)

RT 1
AEn = AE* +— log

B " "^B (N2),/2

CI,, (II.5.B)

the standard formation potential is obtained from which the chemical potential of formation of

MCI may be calculated by using the relation

-wEE* =-nE(AEA + AEg) .
'MCI

There are not enough good values of E for the pure liquid solutes at 450°C to make a mean»

ingful comparison of E and E°. Flengas and Ingraham, from the cells

MCln
M

NaCI-KCI (50-50 mole %)

AgCI

NaCI-KCI (50-50 mole %)
Ag



Ag
AgCI

NaCI-KCI
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NaCI-KCI CI,

dilute enough in the solute to obey the Nernst relation, obtained values of the standard-formation

potential of MCIn, E*, in the NaCI-KCI solvent at 700, 800, and 900°C. Values at 700 and 900°C
are listed in Table 8.

*

For a comparison, values of E in NaCI-KCI (50-50 mole %) extrapolated to 450°C are given

in column 3 of Table 9. Column 4 gives the differences between the values of ji in the two sol

vents. It can be seen that the values of [i are always more negative in the NaCI-KCI mixture

as expected due to the fact that the effective cation radius in the NaCI-KCI mixtures is greater

than in the LiCI-KCl mixtures. Large differences in the two solvents are apparent for the tran

sition metal halides.

In column 4 of Table 8 are listed values of E for the pure liquid at 900°C. Where E was

unavailable the standard formation potential for the pure solid is given in parentheses. The

values of E are taken from Hamer, Malmberg, and Rubin. It should be noted that the value of

E for ZnCI2 is very different from that calculated from Table 6. In view of the discrepancy,

both (/i —ii ) in Table 8 and values of /x cited earlier must be considered questionable for

Table 8. Values of E*, E°, and /x* - jl° in NaCI-KCI (50-50 Mole %) Mixtures

£
*

B°, * 0

900°C700°C 900°C 900°C

MnCI2 + 2.051 + 1.967 1.766 -9260

ZnCI2 + 1.705 + 1.605 1.438 -7200

CrCI2 + 1.603 + 1.523 ~1.307 -9970

TICI + 1.510

CdCI2 + 1.465 1.279 (700°C) - 8580 (700°C)

FeCI2 + 1.365 + 1.293 1.084 -9640

CrCI, + 1.270 + 1.140 (1.06Of

PbCI2 + 1.235 + 1.150 1.076 -3420

SnCI2 + 1.215 + 1.135 ~1.255 + 5530

CoCI2 + 1.169 + 1.070 0.939 -6050

CuCI + 1.105 + 1.055 0.903 -3510

NiCI2 + 0.985

AgCI + 0.845 + 0.795 0.805 230

CuCI2 + 0.675 + 0.603

The standard formation potential for the pure solid.
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Table 9. Values of E* (volts) at 450°C in LiCI-KCl and NaCI-KCI Mixtures and Calculated Differences
in the Standard Chemical Potentials

MCIn E*(LiCI-KCI) E*(NaCI-KCI)a /(NaCI-KCI) - /MLiCI-KCI)

MgCI2 + 2.796

MnCI2 + 2.065

AICI3 + 2.013

ZnCI2 + 1.782

TICI + 1.587

CrCI2 + 1.641

CdCI2 + 1.532

FeCI2 + 1.387

PbCI2 + 1.317

SnCI2 + 1.298

CoCI2 + 1.207

CuCI + 1.067

GaCI3 + 1.10

InCI, + 1.051

NiCI2 + 1.011

AgCI + 0.853

SbCI3 + 0.886

BiCI, + 0.804

HgCI2 + 0.7

PdCI2 + 0.430

PtCI2 + 0.216

AuCI -0.095

2.135 -3230

1.835 -2450

1.715 -3420

1.535 -69

1.465 -3600

1.352 -1615

1.315 -785

1.277 -3230

1.145 -1800

0.905 - 1200

Values of E in NaCI-KCI mixtures are extrapolated from higher temperatures.

ZnCL. The values of E have, in general, an uncertainty large enough so as to make com-

parisons of /z —it semiquantitative. It is clear, however, that the transition metal halides

are greatly stabilized by dissolution in alkali halides, the stabilization being greater the

larger the radius of the alkali cation.

Reznikov, improving on the method of Treadwell and Cohen, made measurements

of the activities of MgCI2 in mixtures with KCI and with NaCI at 750, 850, and 950°C by using
the heterogeneous equilibrium

MgCI2+-02 ^=^MgO + CI2
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Reznikov cites evidence that pure MgO is the solid phase in contact with the melt and that the

known solid solution of MgO with MgCL is unstable at high temperatures. The equilibrium partial

pressures of 0, and CL for the above reaction were measured for pure liquid MgCL and for mix

tures of MgCI2 with NaCI and KCI.

P°C\2 Pc\2
0 \1/2 ^,1/2P02) Po2 flM9CI2

where pure solid MgO and pure MgCI2 are taken as standard states having activities equal to unity,

where p~. and pQ are the equilibrium partial pressures of CL and 02 measured at equilibrium

with pure liquid MgCL and pure solid MgO, and pc. and pQ are the partial pressures at equi

librium with a mixture. Reznikov approached the equilibrium from two sides and his results do

not differ greatly from, but are probably more reliable than those of Treadwell and Cohen. His

values of the activities of MgCL are listed below:

MgCI2-KCI

(50

MgCI2-NaCI
r(°c) M(i\e % MgCI2 mole %MgCI2)

100 75 50 33.3

750 1.0 0.47 0.10 0.010 0.15

850 1.0 0.50 0.11 0.011 0.19

950 1.0 0.54 0.12 0.013

The activity coefficients in the mixture with NaCI are higher than in the mixture with KCI as

expected.

Other measurements using heterogeneous equilibria of the melt with a gas phase include the

work of Blood and co-workers on the standard free energy of formation of NiF_ in NaF-ZrF .

and LiF-BeF2 mixtures using the equilibrium

Ni + 2HF ^=^NiF2 +H2 .

The equilibrium quotient KN given by

KN

N PNiF2 rH2

HF

was constant in dilute solutions indicating that NiF_ obeyed Henry's law. (HF and H2 at the
temperatures and pressures involved are essentially ideal gases.) The standard free energy

(chemical potential) of formation of NiF2 in its standard state in solution (mn-f ) could be
calculated from the equation

^IF2=2GHF-RTlnKN-
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Vapor pressure measurements afford a method of measuring activities in molten-salt mix

tures. Unfortunately, the large number of complex compounds found in the vapor often make

it difficult to analyze vapor-pressure data. As there is no general discussion of this in

standard texts, some of the principles involved in deriving activities from vapor-pressure

measurements will be discussed.

The chemical potential of a component in a mixture is related to the fugacity, /, of the

component

p^RTln/,, (M.5.1)

and for the pure liquid it1 = RT In /,;

/,
it, -ti° =RT In =J?T In «,. (11.5.2)

/|

The fugacity is defined in such a way that f-/p-i -> 1 as P -* 0, where p1 is the partial pressure of
the component in the vapor and P is the total pressure.

In investigations of salt vapors it is generally assumed, and will be assumed here, that, except

for the formation of associated species or compounds in the vapor, the vapor behaves ideally so

that the fugacity of a species in the vapor is equal to the partial pressure of the species.* If only

a monomer is present,

P\
ll,-u.° = RT In — = RT\na,. (11.5.3)

.0 •
Pi

If a vapor with a monomer vapor molecule represented by M1at total pressure, P, associates into

several species

(M,)2 (M,)3 («,),.
M

1 ^

where (M.), is a dimer, (M.), a trimer, etc., then the total pressure P is (if there is only one com

ponent in the vapor)

P = (p,)1 + (p1)2 + (p,)3 + ... = S(p1). , (11.5.4)

where (p,)- is the partial pressure of the associated species (M^.. When the vapor is at equilib
rium with a mixture (or pure substance)

it.(mixture) = /z.(vapor) .

*Although this assumption may be valid, it has never been investigated. It is probable that at pres
sures approaching one atmosphere in alkali halides some of the interactions of the dipoles in alkali halide
vapors are large enough to have an appreciable effect on the fugacity of the vapor even when the molecules
are too far apart to be defined as an associated species.
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One total mole of component 1 in the vapor would have the chemical potential (per mole)

(/>,), (p,)2 (p,)3 Wpi),-H
,,/vapor) =— (ft), +— W2 +— (M)3 +... =2j—F—, (11.5.5)

where (jh)(., the chemical potential of the associated species, is given by (it). = RT In (p.) • if the
non ideality of the vapor is due to the association only, and (p.)./iP is the number of moles of

species i in a portion of gas containing a total of one mole of AI.. Because of the equilibrium,

that

(/i)2 (fi)3 (fi)i

Combining Eqs. (5) and (6) we get

I i i

ft/vapor) = (/x),= —, (11.5.7)

(P,), RT (p,).
,i, -/i° =KT In = In =RT In a, . (11.5.8)

(P°), «• (p°),.

In order to measure the activity of the component 1, one need only know the partial pressures at

a given temperature of one species containing 1 only which is in equilibrium with a mixture which

is in equilibrium with a mixture or with the pure liquid component. At low pressures Eq. (8) is

valid for component 1 independently of all other species in the vapor.

The heat of vaporization A//, of species /' is given by

d(,i./T) Rd\np.
1 ' -AH.. (11.5.9)

d(VT) d(]/T) '

The variation in total pressure with temperature for any mixture or any number of species is

Rd In P p. d In p. p.

—77TT =« L 77t4 =-I— AH- =- £ X.AH. , (11.5.10)d(]/T) ^ P d(VT) UP ' 11'

where X. is the mole fraction of species /' in the vapor, and /' can be any species.

Vapor pressures of mixtures have been measured by several methods. The Rodebush and boil

ing point methods ' ' make a measurement of the total pressure P. In the transport methods120

the vapor at equilibrium above a liquid is swept away with a known volume of inert gas and ana

lyzed. If only one component of the liquid is vaporized, then the apparent vapor "pressure,"

PTr, is

n^RT
=P]' =p} +2(p})2 +3(p,)3 +. .. =2f(p,). , (11.5.11a)
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where P is an apparent "pressure" calculated assuming that the only species is the monomer.

For more than one component

PI'=f»V (11.5.11b)

where P is the apparent transport pressure for the nth component and v is the number of mole

cules of n in species /'.

The vapor composition at equilibrium with a given liquid to obtain association constants may

be analyzed by using more than one experimental method under a variety of conditions and partial

pressures. A complete analysis of the vapor in equilibrium with a mixture requires knowledge of

the association constants for all of the species in the vapor. This analysis may be extended to

the case where more than one component is vaporized. The precision of partial-pressure meas

urements decreases very markedly the greater the number of species in the vapor.

The vapor pressure of ZrF. in equilibrium with mixtures of ZrF4 with LiF , NaF , and
with RbF33'121 have been studied by the transport method120,121 and by the Rodebush tech
nique.33 Values of p.E for ZrF. at 912°C are given in Fig. 15 with the value of pZrF (calculated

4

from the equation given by Cantor for the vapor pressure) at the measured melting point of 912°C;

log p% P (mm) = 12.542 - 11,360/T (°K) . (11.5.12)
c,v4

At high ZrF concentrations the major species in the vapor is ZrF4> Deviations from ideality are
large, and are larger the larger the alkali cation. Some of the values of the vapor pressure used

in these calculations were not directly measured but were extrapolated from other temperatures.

Although Sense and co-workers report vapor pressures of the alkali fluorides in these mixtures,

they do not in any case properly correct for the presence of associated species in the vapors.

Cantor and co-workers33 have reported that in RbF-ZrF4 mixtures the excess entropies are
positive and that the excess enthalpies as obtained from temperature coefficients of vapor pres

sure data exhibit both positive and negative values. Although these conclusions are more reli

able than those obtained from emf data, the temperature coefficients are subject to large errors.

The most thorough study of the vapor pressures of a molten-salt mixture is that of Beusman,

who partially studied LiCI-FeCL mixtures and studied more completely KCI-FeCI2 mixtures at

temperatures from about 850 to 1000°C by using the Rodebush technique for measuring the total

pressure and the transport method for measuring the vapor composition.

In the vapor above mixtures of KCI and FeCL the presence of the species FeCI2, Fe2CI4,
KFeCL, KCI, and K2CL was consistent with his measurements. Calling these species 1, 2,
3, 4, and 5 he could solve for the number of moles of each of these species in a unit volume of

vapor and, hence, for the partial pressures at equilibrium with the melt from measurements of the

total pressure of salt (P = n RT/V), and by a chemical analysis of the chemical compounds swept
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Fig. 15. Excess Chemical Potentials of ZrF4 in Mixtures with LiF, NaF,
and RbF as Obtained from Vapor-Pressure Measurements.

out by a unit volume of gas from above the pure components and from above the mixtures. He solved

the simultaneous equations

nv = "l + n2 +*3 +*4 + *5 '

BF.=B1 +2«2 +"3 '

nK =n3+n4 + 2n5 ,

n\ =KFeCI "2

"4 = KKCIWS
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where n is the total number of moles of all species in a unit volume, nF and «K are the number of

Fe and K ions in a unit volume, and K_ _. and KK_| are the dissociation constants in pressure

units for the dimer of the subscript component and were evaluated from data obtained with the pure

materials KCI and FeCI2. The presence of a trimer in LiCI vapors made this procedure very im

precise since the calculations, which essentially involve subtracting large numbers, are much more

sensitive to errors in the measurements when more species are involved. In Fig. 16 are plotted

Beusman's values of p. for the two components FeCI2 and KCI at 900°C derived from the values

of the partial pressures. It is apparent that values of p. are all negative. Calculation of ftKC |

from pE _. by integrating the Gibbs-Duhem relation

N, dpE +N2 dpE =0

leads to about the same values as were measured.

The deviations from ideality of KCI are somewhat greater than those for FeCI2, and the appar

ent values of both the excess entropies of mixing and partial molar heat of solution are positive.

Barton and Bloom have measured the vapor pressures of PbCI2-KCI, CdCI2-KCI, and CdCI2-

NaCI mixtures at 900°C by using boiling point and transport methods. . At concentrations of
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Fig. 16. Excess Chemical Potentials of KCI and FeClj in KCI-FeCI2
Mixtures as Obtained from Vapor-Pressure Measurements.
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less than 60 mole %alkali halide they could neglect the volatilization of the alkali halides and

vapor compounds containing alkali halides. Their results are in fair agreement with the emf meas

urements of Lantratov and Alabyshev on the PbCI2-KCI system. They found that the apparent

deviations from ideal behavior in the CdCL-KCI system were smaller than in the CdCL-NaCI sys

tem. The measurements in the systems containing CdCL are open to question.

11.6 Discussion of Binary Systems with a Common Anion

The results in the previous section exhibit certain very general features for mixtures of salts

of a monovalent alkali cation with salts of a polyvalent cation. The most obvious feature is the

variation of the thermodynamic properties with cation radius and charge. The deviations from ideal

solution behavior of both the alkali ion salt and the salts with polyvalent cations usually become

more negative (or less positive) with an increase in the radius of the alkali cation and with an in

crease of the charge or decrease of the radius of the polyvalent cation. This type of behavior has

often been ascribed to "complex ion formation'' or to "complexing. ' ' ' This terminology

has been used so freely and in so many different senses that some of the "explanations" of solu

tion behavior in terms of "complexes" are merely redundancies of the observed facts and add noth

ing to the understanding of solution behavior in terms of physical concepts. As a consequence, in

this section, a discussion and critique will be given of this concept.

Among the most reasonable and careful considerations of the concept of complex ions are those

of Flood and Urnes and Grjotheim. Flood and Urnes, for example, discuss the liquidus curves

of RbCI, KCI, and NaCI in mixtures with MgCL. They reason that a mixture of an alkali halide

with an alkali salt of a large divalent anion will exhibit only small deviations from ideality. Evi

dence for this comes from the apparently negligible deviations from ideality found in the liquidus

curves of Na2S04 in mixtures with NaCI and with NaBr. (Note the work of Cantor on the parallel
effect of cation radius.) Flood and Urnes propose that the component M2MgCL containing the

MgCI4 ~ grouping would exhibit small deviations from ideality based on the Temkin definition.
Thus at low concentrations of MgCL,

* - WMC|-2wMgCI,
*mci = = "• (II-6-D

CI" MgCI42- MCI M9C,2

The procedure of Flood and Urnes is essentially a redefinition of components. They show that the

liquidus temperatures (and activities) for KCI and RbCI are in reasonable agreement with Eq.

(1). The liquidus temperatures (activities) of NaCI in NaCI-MgCL mixtures exhibit positive devia

tions from the calculations based on Eq. (1). This was ascribed to a partial dissociation of the

MgCI4 ~~ ion. Thus, by the redefinition of components, and by the careful choice of systems, rea
sonable correlations with the data were obtained.

Although such a procedure has the advantage of being simple, there are many criticisms which

can be made. The major criticism, perhaps, is that this method can be applied to very few systems
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and does not lead to quantitative predictions which can be made a priori. For example, the liq

uidus temperatures of NaF in NaF-BeF2 mixtures are too low to be described by any redefinition

of components which is consistent with possible structural concepts. Since the Be ions are so

small, a coordination of Be cannot be expected larger than four and yet a mixture of, for ex

ample, NaF and Na2BeF4 would have to be described as exhibiting negative deviations from ideal

solution behavior. On the other hand, no reasonable choice of a "complex ion" grouping or com

plex component can be invoked to explain the small deviations from ideality of NaF in NaF-BeF2

mixtures. Further, although the thermodynamic data may be described by choosing a particular

complex component, this does not necessarily imply the existence of the ions of this component in

the melt. Except for the very stable (relative to the separate ions) complex ions as N03~, P04 ~,

and SO. , a simple comprehensive description of the solution behavior of mixtures with a common

anion cannot generally be made with only one "complex ion" and little can be learned about solu

tion behavior a priori from such an approach.

The absence of a simple explanation of the solution behavior of molten-salt mixtures is evident

from the analogy between «., _ in HCI-H-0 mixtures and a_ _ in NaF-ZrF . mixtures shown in
8,7 H.O 2 ZrF4

Fig. 17. In water the 0-H interaction is very strong so that it is only slightly ionized. At low
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Fig. 17. Plot of the Activity of H20 in H20-HCI and HjO-HBr Mixtures at
25°C and the Activity of ZrF4 in ZrF4-LiF, ZrF4-NaF, and ZrF4-RbF Mixtures
at912°C.
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concentrations of HCI the solution may be understood in terms of solvated H and CI- ions inter

acting in a dielectric medium. In mixtures with HBr the activity of water is even lower than with

HCI. The limiting law at concentrations of HCI greater than the concentration of H from the self

ionization of water is

^H2o-^°H2o =RTlnn-2NHC|), (11.6.2)

since HCI behaves as two particles. If yH _ is defined by
'2V

'iH20-'xH20 =Rrln/VH20)/H20' (|L6-3'

then at low concentrations

1 -2N
HCI

HCI
yH2o-TT7r-<1- (IL6-4)

Interionic interactions of H and CI- will cause yH Qto differ at higher concentrations from the

value given by (11.6.4). Beyond the range of validity of the Debye-Huckel theory, this is unpre

dictable although there is a persistence of the negative deviations from "ideal" solution behavior.

In NaF-ZrF4 mixtures, the solvent ZrF4 may be considered to be more highly ionized than

water. Consequently, the self ionization of ZrF . and the one particle limiting law will probably

hold to higher concentrations than in water so that the deviations from ideality in dilute solutions

based on an equation such as (11.6.3) will be smaller in the NaF-ZrF4 mixture than in HCI-H-0

mixtures. Apparently the smaller (less negative) deviations from ideal solution behavior in the

NaF-ZrF4 mixture as compared to HCI-HjO mixtures persist at high concentrations. Just as with

water, the larger the size of the "foreign" ion (CI- and Br- in H-0 and Li , Na , and Rb in

ZrF4) the greater the deviations from ideality. This does not explain the observed solution be

havior in NaF-ZrF4 mixtures but merely suggests that any fundamental explanation in concen

trated solutions is at least as difficult as in concentrated solutions in water where it is clear that

the H and CI- ions are solvated but no valid quantitative predictions can be made in terms of

structural concepts. Because of these apparent inadequacies of the concept of "complex ions" in

describing solution behavior in mixtures containing one type of anion it is in order to discuss and

attempt to classify some of the effects and interactions which have been included in the terms

"complex ion" or "complexing" in the hope that such a procedure would be more instructive and

useful in future attempts at deriving quantitative theories. Most definitions of "complex ions" or

of "complexing" fall into two categories.

In the first category a "complex ion" is usually conceived as a microscopic structural entity.

A complex ion can be most clearly defined as a grouping of at least one central cation and near-

neighbor anions having a particular configuration. If each grouping is isolated from others and

shares no anions, then the grouping is a finite complex. NO.,-, PO. , and S04 ions are finite

complexes. If the groupings are all interconnected by shared anions, then infinite complexes are
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present. By these definitions all pure salts are infinite three-dimensional complexes and very di

lute solutions of one salt in another always contain finite complex ions although the configura

tions of all the finite complexes are not necessarily uniform. X-ray, ultra-violet, infra-red, Raman

spectra, and other methods of investigating structure are means for investigating these complex

ions.

In the second category the terms "complex ions" or "complexing" are used to describe a tend

ency to stabilization. This is the least satisfactory use of this terminology, since so many differ

ent interactions and concepts are included in this usage that less information is conveyed than by

the use of the word stabilization.

For pure materials as for example AgCI, NiF„ or HgCL, specific interactions (van der Waals'

ligand field and covalent binding) give rise to more negative values of the energy of formation from

the isolated ions than might be expected for alkali or alkaline earth halides where Coulomb inter

actions are relatively more important. In solutions the tendency to "complexing" or toward the

stabilization of a component in solution is characterized by negative values of p . Some of the

solution effects which influence the values of p. are:

(a) Coulomb effect. The discussion in section II shows thatCoulomb interactions in mixtures

of salts containing monovalent ions lead to negative values of p . This effect appears to be pres

ent in mixtures containing polyvalent cations. Long-range interactions are very significant in this

effect and as a consequence a quantitative description of this effect in terms of finite complexes

can only be fortuitously correct.

(b) Polarization effect. The field intensity at an ion position will, in general, not be zero be

cause of ionic motions and because of the different sizes and charges of cations. For example, an

anion having two cations the same size but of different charge as near neighbors will tend to have

a Coulomb field intensity on it. As a consequence, the electrons on the anion and the thermal mo

tions of the anion will be "polarized" so that the negative charges reside a greater fraction of the

time near the cation with the higher charge. In a pure molten salt this effect will be expected to

be smaller than in a mixture, and the net contribution will lead to a relative stabilization of the

mixture (negative contribution to the deviations from ideal solution behavior).

(c) van der Waals' interactions. As in mixtures containing monovalent cations these interac

tions usually will lead to a positive contribution to the deviations from ideal solution behavior for

systems containing polarizable cations. To illustrate with a clear-cut example, the systems NaCI-

PbCL and AgCI-PbCL might be compared. In the former the measured deviations from ideal solu

tion behavior of PbCL are negative (/^p bc| <0)/ anc' from tne Gibbs-Duhem equation it can be
shown that pE c| is also negative. Measurements in the latter system indicate that pA C| (and
pE, _. ) is essentially zero at all concentrations. The major differences between these two sys
tems are probably related to the high poiarizabiIity of the Ag ion as compared to Na and hence

to the contribution to van der Waals' interactions. Quantitative estimates of the magnitude of this

effect in such systems are tenuous at present.
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(d) Ligand field effects. These interactions will tend to stabilize pure salts of transition

metal ions and particular configurations of near-neighbor anions will tend to be more probable.

Such stabilization, regardless of the specific symmetry of the near-neighbor anions, will tend to be

monotonic with the strength of the negative ligand field. For given anions as near neighbors to a

particular transition metal ion in a mixture, the negative ligand field will be attenuated by more

distant cations with the attenuation tending to be smaller the smaller the charge and the larger the

radius of these other cations. The dissolution of a transition metal salt, NiF2 for example, in an

alkali fluoride would lead to a replacement of next-nearest neighbor Ni by monovalent alkali cat

ions. This will lead to a stabilization of NiF_ (/^m-f < 0)/ which would be more pronounced the
larger the alkali cation. The influence of ligand-field interactions will be limited by steric require

ments and in mixtures with alkali metal salts will probably lead to negative contributions to the

deviations from ideal solution behavior of both components.

(e) Packing and steric effect. To satisfy the tendency toward local electroneutrality it is

probable that small highly charged cations will tend to have a larger number of anions as near

neighbors than cations of low charge. Any energy changes (stabilization) related to this effect

will be sterically limited in accordance with the values of the anion-cation radius ratios.

All of the factors mentioned are included in the concept of "complex ion" of or "complexing"

when it is applied to stabilization. Some of these effects may be concomitant with a foreshorten

ing of cation-anion distances (e.g., coulomb, polarization, and/or ligand field) or with a tendency

toward specific configurations of anions about cations (e.g., ligand field and/or packing). In all

cases, these factors influence the free energy differences between pure salts and salts in solution.

It may be preferable to refer to the observation of negative values of p as a stabilization, since

such a stabilization is not necessarily related to the observation of a "complex ion" as a struc

tural entity. By this usage, no unwarranted implications about the structure of the melt need to be

made.

The existence of solid or gaseous compounds which are made from the two salts in a solution

cannot be used as evidence that particular "complex ions" are formed in solution. Although many

of the factors and interactions which lead to relatively greater stability of gaseous and solid com

pounds may also give rise to negative deviations from ideal solution behavior, many of the factors

influencing the structure of solids or gases have no counterpart in liquids. For example, in solids

steric repulsions of the ions are more important than in liquids and have a strong influence on

structure; and in gases the entropies of association are generally negative and give rise to a

strong influence in favor of forming the simplest compounds. Kinetic definitions of "complex

ions" in terms of the lifetime of a grouping or of the relative mobility of ions cannot be clearly

related to equilibrium thermodynamic properties or to "complex ions" as a structural entity unless

these lifetimes are very long.

Since there is no adequate theory for most binary mixtures, p , for any component in a given

mixture containing polyvalent cations, must be estimated empirically by comparison with known

systems containing mixtures of the same charge type and the same anion. Keeping in mind the
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types of interactions which influence the values of p , reasonable estimates may be made by anal

ogy with known systems or by interpolation. The development of a theory, as, for example, by the

extension of the perturbation theory of conformal ionic mixtures to mixtures containing cations of

different valence, would be an aid in such estimations and might be used to confirm empirical re

lations such as was proposed by Kleppa.

11.7 Other Systems

Measurements of the activities of lead halides in the mixtures PbCI2-ZnCI2 (ref 131) and
PbBr -ZnBr (ref 117) indicated small negative deviations from ideal solution behavior in the for

mer and small positive deviations from ideality in the latter. (Calculations of the activities of

ZnCL in the first system by use of the Gibbs-Duhem relation were in reasonable agreement with

activities calculated from measurements of the partial pressures of ZnCL in this system. ) In

these two systems there is no difference between the mole fraction of a component (Npbx ) and
the product of the ion fractions (NphNx = Npb = Npbx ) and there is little ambiguity in defining
activity coefficients. On the other hand, in a system as PbCL-PbBr there is some ambiguity,

since Np.N2. = Nx =Npb x . In such systems, consequently, the definition of activity coeffi
cients depends on the type of compounds. If the lead halides were very stable molecular com

pounds and did not react with each other (were not molten salts), then the activity coefficient

would be defined by apbx = Npbx ypbx • For ionizing salts (or where the compounds are mo
lecular, and where one might consider the exchange PbCI2 + PbBr2 ^=^ 2PbCIBr), in order to be
consistent with the limiting laws, the activity coefficient is better defined by «pbx =
Np.N^yphx . On this latter (and more realistic) basis, the activity coefficients, ypbBr in
PbCL-PbBr, mixtures, are larger than unity. The choice is not always clear-cut as many com

pounds cannot be strictly classified as either molecular or ionic salts.

Very few other measurements on binary systems that have a common cation have been made.

Precise measurements by Toguri, Flood, and Firjrland50 on the exchange equilibria

CI2 + 2MBr f=^2MCI+ Br2 (II.7.A)

in LiCI-LiBr, NaCI-NaBr, and KCI-KBr mixtures were used to investigate the activity coefficients

of the alkali halides in these mixtures. The equilibrium constant for (A) is

Nlc\ylc\pBr2 yMCi

^MBr^MBr^Clj ^MBr

where K' is the measured equilibrium quotient. Taking the logarithm of K^ and using as a first
approximation for the activity coefficients in any one binary system

RTlnyMCI = AyVMBr and i?Tln>/MBr=^MCI'
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then

RT In K' =RT In K+2A(N2 Bf - N2 c,) . (11.7.2)

Plots of RT In K' vs (N2 - N2 ,) led to the values of Ain Table 10, which indicate small posi-
M d r M L I

tive deviations from ideality. For these relatively large and polarizable anions, packing or van der

Waals' effects have been proposed as possible contributing factors. To contrast this, an analysis

of the liquidus temperatures of LiF-LiCI mixtures with the data in Table 1 indicates small nega

tive deviations from ideal solution behavior for both components. Since the F- ion is smaller and

less polarizable than Br-, it would seem that at least one of these two properties of the ions is

significant.

Table 10. Values of A (cal) from Equilibrium Measurements

in Binary Systems with a Common Cation (M)

Na K

MBr-MCI 150 350 530

M2Cr20?-M2Cr04 0 ~300 ~500

Similar measurements of the equilibrium

M2Cr207^=^M2Cr04 + !£Cr203(solid) + ^O2 (II.7.B)

in molten mixtures of chromates and dichromates have been made for M = Li , Na , K , or Tl .

The equilibrium constant, if Cr04 - = X and Cr207 ~ = Y , is given by

"xfro2>3/4 >v yM2x
K^ K> , (,1.7.3)

'VY ^Y "M2Y

by using the approximation that RT In yM x = AN2 Yand RT In yM Y= AN2 x the values of A
could be obtained from the slope of a plot of In K' vs (N2 x —N2 y). These are given in Table
10 and are seen to be small. When M was an alkali ion the stability of M2Cr20, relative to

M2Cr04 increased as the size of the M cation increased and consequently the equilibrium con

stant K„ (and the equilibrium quotient K') for reaction (B) decreased with an increase of the size

of M . This is also true for the equilibrium in reaction (A). These facts are useful for anticipat

ing some of the properties of molten reciprocal salt systems discussed in section III. For example,

consider the equilibrium (B) in a mixture of Na,Cr207 and Na2Cr04. The equilibrium constant is
given by

-fiTl^N0 =FNa2Cr04 +Wr^ " ^Na^O, d"-™
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and is, of course, dependent only on the properties of the pure reactants. If the composition of the

mixture is altered so that the Na ion is gradually replaced by K ion, the equilibrium (B) will

gradually go more to the left and K' will decrease. When very little Na ion is left and the melt

is essentially a mixture of K-Cr.O, and K„CrO ., the value of K' will be equal to the value of
' 2272 4' Na ^

K". in the mixture containing only the K cation. For this case one obtains from Eq. (3)

In K' = In K' = In K^, - In (y v/y., v)Na K Na ''Na.X 'Na2Y

=lnKK-ln(yK2X/yK2V), (11.7.5)

where the activity coefficients are all in a solution containing mainly K ions and very little Na

ion. Introducing Eq. (4), one obtains

ln ^Na2X/>/Na2Y) ='" ^KHo/KK] +'" ^K^K^

V + In (yK x/yK y) , (11.7.6)
RT N2A *2

where Ap is the free energy change for the reaction of the liquids in (C)

Na2Cr20? + K2Cr04?=^ K2Cr2°7 + Na2Cr04 (II.7.Q

and the last term in Eq. (6), In (y vAv v)< can be seen to be small in this case from the data in
n . 2 2

Table 10. The value of Ap is negative and the ratio of the activity coefficients of the components

Na_Cr04 and Na.Cr207 is much greater than unity, and in simple cases such as this, Na2Cr04 ex

hibits positive deviations from ideal solution behavior and Na2Cr207 exhibits negative deviations

from ideal solution behavior. Thus Na2Cr04, which is a member of the stable pair in reaction (C),
exhibits positive deviations from ideality and Na2Cr207, which is not a member of the stable pair,

exhibits negative deviations from ideal solution behavior. This tendency is present in all recip

rocal systems. Flood and Maun have measured In K'as a function of the ion fraction of Na in

mixtures of Na , K , Cr04 ~, and Cr202- ions. Aplot of In K'vs NN given in Fig. 18 can be
seen to be nearly linear in the cation fraction. The data fitted the equation

ln *Na.K " NNo '" KHa +NK ln KK +iNNo\ ' <".7.7)

where h is —0.2 at 662°C. Similar measurements in the Tl , K , Cr04 ~, Cr20? system are
plotted in Fig. 18. The quantity h is discussed by Flood and Maun, is related to the proper

ties of binary mixtures made up from the four ions in the system, and is probably small when all

the binary systems have small deviations from ideal solution behavior. These properties of recip

rocal systems have been used in an ingenious derivation of a zeroth order theory of these sys

tems. ' A more complete description of reciprocal systems is given in section III.

Since linear relations are often useful from a practical point of view, two linear relations which

apply to ternary systems having a common anion will be stated. These apply to ternary systems

in which the solution properties of two of the components (components 1 and 2) do not differ greatly,

mixtures of these two components do not exhibit large deviations from ideal solution behavior,
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Fig. 18. Measured Values of the Equilibrium Quotient for the Reaction

(II.7.B).

and the properties of these two components differ significantly from the third component (component

3). In these cases, some of the properties of the ternary mixtures may be estimated from the prop

erties of binary mixtures composed of the three components.

To illustrate, the measurements of FoVland ' on the partial pressures of C0_ in equilibrium

with CaC03 which is component 3 in mixtures of Na2C03, KXOg, and CaC03 will be used. The
C02 is in equilibrium with CaC03.

CaC03(solution);==^CaO(solid) + C02(gas).

The components Na2C03 and K2C03 have negligible partial pressures of C0-, and the partial pres
sure is proportional to the activity of CaC03 in solution. FibYland derived the relation having a
form similar to the equation below which at a constant mole fraction of component 3 is

In y. (in ternary) In y (in binary 1-3 mixture)
N^+N2 '3

N,

yN1 + N2
In y3 (in binary 2-3 mixture) - NyN2h', (11.7.8)
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where h' is related to properties of binary mixtures of 1 and 2 and the last term in (8) is negligible

when the properties of 1 and 2 differ little. Although F/rland derived this equation (in somewhat

different form) under the restrictive assumption of regular solutions, the modified result (Eq. 8) is

probably much more general. The form used here has been changed to avoid the ambiguity associ

ated with the concentration scale to be used.

The measurements of pCD in mixtures of CaC03 with Na_C03, with K.C03 and with an equi-

molar mixture (Na,K)CO- at a constant mole fraction of CaC03 was consistent with the equation

NNq
In p_n [(Na,K,Ca)CO J = In p_n [(Na,Ca)COJ

C02 3 Nu + N„ C02 3
N a K

NK
lnpcoJ(K,Ca)C03], (11.7.9)

'N«T"K

which is consistent with Eq. (8). A similar relation for component 1 at constant mole fraction of

component 3 is

In y, (in ternary) = In y. (in binary 1-3 mixture) + b'"N2 + h'"N2 , (11.7.10)

where h'" is probably small when components 1 and 2 do not differ greatly in their properties. To

illustrate this Christian, in unpublished work on the partial pressure and activities of ZrF4 at

912°C in mixtures of ZrF4, UF4, and NaF containing 54 mole %of NaF, demonstrated that the

measurements fitted the equation

lnyZrF = In 0.049+ 4.12NUF . (11.7.11)
4 4

Further tests in other systems of such linear relations would be of interest.

RECIPROCAL SYSTEMS

lll.l General

Reciprocal systems are mixtures of salts containing at least two cations and two anions. The

nature of this class of systems lends itself to theoretical treatment. Perhaps the most obvious,

and most naive treatment of this class of systems considers the reciprocal chemical reactions. For

example, in the simplest type of reciprocal system A , B , X , Y , the reciprocal reaction

AYdiq) + BX(lic')5=^AX(liq) + BY(liq) (lll.l.A)

is considered. It is easily shown that for the system to conform to Temkin's definition of ideality

it is necessary that the free energy change (AG. or ApA) and the enthalpy change (AHA) for the

equilibrium (A) be zero and that all of the binary systems AX-BX, AX-AY, AY-BY, and BX-BY

form ideal solutions. Except for isotopic mixtures all of these conditions are probably not

realized in any real systems.
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If ApA for reaction (A) is negative, then there will be a tendency for the components AX and

BY to exhibit positive deviations from ideal solution behavior, and if Ap. is positive there will be

a tendency for AX and BY to exhibit negative deviations from ideal solution behavior. That these

are tendencies and not necessary consequences can be illustrated in a simple manner. The excess

free energy (or enthalpy) of dissolution of a small amount of AY to form an "infinitely" dilute so

lution in BX can be calculated from the sum of ApA (or A//A) with the sum of the excess chemical
potentials (or enthalpies) for the processes

AXdiq) _^ AX(dilu,e solution> ApB , (lll.l.B)

BY '̂ic'' > gY(dilute solution) a ^ /||| i q

Thus, in dilute enough solutions, the excess chemical potential of solution of AY is Ap. + ApR +
Apc and hence the sign and magnitude do not depend on A/zA alone. There is a rough correla
tion between ApA (or AH A)* and the deviations from ideal solution behavior and the types of be
havior which are exhibited in solid-liquid phase equilibria.

In the previous section ApB and A^c have been discussed. The term Ap°. (or AH.) is related
to a variety of types of interactions. When values of A/xA cannot be obtained from tables, it is
sometimes useful to be cognizant of one of the major influences on Ap., that of coulomb interac

tions.

For the alkali halides, for example, the largest contribution to Ap. is the Madelung tern
"A

1111
-Ae2

^AX ^BY ^AY ^BX

where d = r. + r , where r. is a cation radius and r. is an anion radius. It can be shown that if

rA < rB ar|d rx > rY, or rA > rR and rx <ry then the Madelung term is positive. This tendency
leads to the general reciprocal Coulomb effect which is valid for all the alkali halides. This ef

fect is such that in a reciprocal system with two cations and two anions the two stable components

(stable pair) as evidenced by A/tA are the small cation-small anion component and the large cation-
large anion component. These two components** would tend to exhibit positive deviations from

ideal solution behavior and the other two negative deviations. From a consideration of the Made

lung term one would expect positive deviations from ideal solution behavior for the stable pair to

increase in the order [NaF-KCI] < [LiF-KCI] < [LiF-CsCI] < [LiF-CsBr]. The last two systems ex

hibit such large deviations from ideal solution behavior as to have liquid-liquid miscibility gaps
which have been observed. The reciprocal Coulomb effect probably applies for salts of different

valence containing nonpolarizable ions and is in such a direction that in a given system the salt s

*The criteria which are discussed and used by Bergman and associates are the values of AG(Ap) of the
solids at room temperature which in view of their crude correlations are equivalent to Ap or Art.

**AII four components are not independent of each other and only three of the four are true components
in the Gibbs sense.
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with the smallest or most highly charged cations and smallest or most highly charged anions will

tend to be a member of the stable pair.

Obviously, the Coulomb effect is not the only important one and many deviations from the gen

eralization are to be found, especially for systems containing polarizable ions. For example the

reaction

AgN03 + NaCI ^^ AgCI + NaN03

has a large negative value of Ap or AH (about -15 to —17 kcal/mole) which is considerably more

than the Coulomb effect and which is probably the result of the large stabilization of AgCI by van

der Waals' (London dispersion) interactions of Ag and CI .

By contrast with the binary systems discussed in section II, the interactions are, in general,

much larger in reciprocal systems as they are mostly between nearest-neighbor cations and anions

rather than next-nearest neighbors and consequently one would expect to find many reciprocal sys

tems with very large deviations from ideal behavior. In the following chapter some of the theories

will be discussed which have been advanced for these systems beginning with the simplest approx

imation and continuing with approximations of increasing complexity.

III.2 The Random Mixing Nearest-Neighbor Approximation

This derivation is based on the Temkin quasi-lattice model. For the simplest member of this

class of systems, that containing the two cations A and B and the two anions X and Y , the

model is an assembly of charges in vacuo and consists of two interlocking sublattices, one a lat

tice of the cations A and B and the other of the anions X and Y . The nearest neighbors of the

cations are anions and of the anions are cations.

The total entropy of mixing is AST/R = —2« . In N. —Sn . In N• and for any component is S•. —

S . = -R In N .N., where i and i are cations and anions respectively. All of the ions have the same
i] i y ' r '

coordination number Z. The model is restricted so that all of the ions of the same charge are the

same size. This restriction eliminates any difference in the long-range Coulombic interactions be

tween either A or B ions or X or Y~ ions and their respective environments, and limits the

model to short range extra-Coulombic effects which are assumed to be nearest-neighbor interac

tions.* The form of the equations derived will probably apply even to systems with different-size

ions.

In Fig. 19 is a two-dimensional representation of the quasi-lattice. If the pair interaction

energy of A -Y~ is e., of B -X~, e2, of A -X~, e3, and of B -Y~, e4 then

AEAe=e4+e3-e2-e]=T, (111.2.1)

*lf random mixing is assumed, or for a dilute solution only one pair need be the same size to eliminate
differences in the Coulombic interactions.
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Fig. 19. Two Dimensional Quasi-Lattice Representation of the Process

A + X" ?=^AX in the Solvent BY.

where Ae is the energy change for the interchange of the circled X~ and Y~ ions and is the energy

of formation of the ion pair A -X~. If there is random mixing of the cations and of the anions on

their respective sublattices, then the fraction of positions adjacent to any given cation occupied

by a given anion will be equal to the ion fraction of that anion. The assumption is made that the

relative energy of each A -X- pair is Ae. This is equivalent to the assumption of the noninter

ference of pair bonds or to the assumption of the additivity of bond energies. Since the total num

ber of positions adjacent to any ion is equal to n.Z or n.Z, then the total energy or enthalpy of the

solution is

ET = nAZNy(e} + K) + nBZNx(e2 + K) + nAZN x(e3 + K) + «BZNy(e4 + K) = HT , (III.2.2)

where ZK is the value of the energy of interactions of the A or the B ions with ions beyond the

nearest-neighbor anions. The partial molar enthalpy or energy of solution is

H..~ H°. = /?..- E°. = ±(1 -N.)(l -N.) ZAE , (III.2.3)

where the —sign is pertinent when ij is AX or BY, and the + sign is pertinent if it is AY or BX.

Rememberinq that a.. = H .. —TS .., then
3 rij i] ij'

and

ptj - //° =±(1 - N.)(l - Ny) ZAE +RT In N.Ny

RT In y..= ±(1 -N.)(l - N .) ZAE .

(III.2.4)

(III.2.5)
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The derivation of Eq. (5) is implied by the work of Flood, F^rland, and Grjotheim who have, how

ever, emphasized a somewhat more general relation. Equation (5) is strictly valid only for cases

in which AE is small relative to RT so that one might reasonably be close to random mixing of the

ions. The form of Eq. (5) is probably valid in some cases where there is only a small deviation

from random mixing and is instructive and important for the qualitative understanding of solution

behavior. Flood, F^Srland, and Grjotheim propose a method for making a crude estimate for ZAE

from the heat contents of the pure components. Figure 20 is a two-dimensional quasi-lattice repre

sentation of the metathetical reaction (lll.l.A) for which the heat change is AH per mole.* Since

all ions of the same charge are the same size, only extra-Coulombic nearest-neighbor interactions

are changed in this reaction. Since the number of nearest neighbors for each of the salts is ZU per

mole of salt, then for the reaction AH = ZAE, if each pair interaction energy were the same. In

real systems the pair interaction energies are probably a function of the number and kinds of anions

which are nearest neighbors to a given cation so that AE will not be truly constant and will only

be roughly approximated by (AH /Z).

A relation analogous to (5), but somewhat more general, has been derived by Flood, FidVland,

and Grjotheim

RT In y.;.= ±(l-N.)(l-N;.) Ap° , (111.2.6)
where Ap is the change of chemical potentials for the metathetical reaction (lll.l.A).

kFor many reciprocal salt pairs probably AS = 0 so that AH = Ap .

UNCLASSIFIED

ORNL-LR-DWG 31158A

A + Y~ A+ Y~ B + X~ B+ X~

Y~ A+ Y~ A+ + X~ B + X~ B+

A* Y~ A+ Y~ B+ X~ B+ X~

V

11
f

A + X~ A* X~ B + Y~ B+ Y~

X~ A+ X~ A + + X~ B+ Y~ B+

A + X~ A+ X~ B+ Y~ B+ Y~

Fig. 20. Two Dimensional Quasi-Lattice Representation of the Metatheti

cal Reaction AY(liq) + BX(liq) ^ AX(liq) + BY(liq).
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If the deviations from ideality are large enough, then the solution will tend to separate into two

liquid layers. Since the theory is symmetrical in composition, the upper consolute temperature,

T , below which temperature two liquid phases will form, will be at a composition such that N . =

^X = ^B ~ ^Y ~ 4* '* may ^e ca'culatec' ^rom Eq. (5) or (6) by setting the derivative da /dN .„
equal to zero in mixtures of AY and BX, where N. = NY = NAY = N_ = N„ and NAY is the mole

fraction of AY in a mixture made up from the salts AY and BX. The expression for the upper con

solute temperature derived from Eq. (5) is

ZAE ^ AH0
T = = (III.2.7)

c 4R 4R

and from Eq. (6)

Ap°
Tc=^—. (Hl.2.8)

c 4R

To illustrate Eqs. (5), (6), (7), and (8) let us consider the dissolution of a mole of liquid AgCI

in NaN03, where the ions Ag , Na , N03 , and Cl~ correspond to A , B , X", and Y~ respectively.
From published data59'78'1 U on the pure salts, Ap° = +17 kcal and AH0 = +15 kcal at 455°C. It
can be seen from Eqs. (III.1.5) and (III.1.6) that the components AgCI and NaN03, which are mem
bers of the stable pair, should exhibit positive deviations and AgN03 and NaCI should exhibit
negative deviations from the Temkin ideal-solution behavior. The results are similar for the sys

tem Ag , K , N03 , CI . In both these systems the calculated upper consolute temperature is well

above the melting point of all the possible components that can make up the system, and two im

miscible layers are present in this system. However the measured upper consolute temperature is

much lower than that calculated from Eqs. (7) and (8). Similarly in the system Li+, K+, Cl~, F~,

where the stable pair is LiF-KCI, the values of Aft0 and AH° at 1000°K are about +17 kcal; 51'59'78
yet two liquid layers have not been detected in the quasi-binary system LiF-KCI,5' although the
calculated consolute temperature is very much higher than the measured liquidus temperatures.

Clearly Ap and AH are not the sole measure of the deviations from ideality in reciprocal molten-

salt systems. In mixtures for a given class of salts, such as alkali halides, they probably serve

as a guide to the relative deviations from ideality. For example, the positive deviations from ide

ality in LiF-KCI quasi-binary mixtures are greater than for the NaF-KCI mixtures. The values of

Aft for these two systems are +17 and +8 kcal respectively.51 An analysis of the quasi-binary
liquidus temperatures for LiF-KCI and NaF-KCI in which the stated components exhibit positive

deviation from ideal behavior and of the liquidus temperatures for LiCI-KF and NaCI-KF mixtures

in which the stated components exhibit negative deviations from ideal behavior has shown that Eq.

(5)or(6)onIy describes the solid-liquid equilibria in a semiquantitative manner.51 The short

comings of these two equations stem from a variety of possible reasons. Fnfrland58 has discussed

the influence of those interactions which reciprocal systems have in common with binary systems

containing either two cations and one anion or two anions and one cation. As discussed in section

II, these interactions are of longer range than nearest-neighbor interactions. FoVland has discussed
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this possibility for the hypothetical case in which this effect can be described in terms of the equa

tions of regular solutions. From the derived relations it can be shown that if the binary systems ex

hibit negative deviations from ideality, then the correction terms to Eqs. (5) and (6) are in a direc

tion which makes the activity coefficients smaller and which lowers the calculated upper consolute

temperature. Although this correction is in the right direction, it is not large enough to lead to a

good correspondence of calculations with experiment. As discussed in the following sections it

will be shown that two other important effects which have been experimentally demonstrated are

present. One effect is related to the nonrandom mixing of the ions which, except for extremely

small deviations from ideality, leads to magnitudes and a concentration dependence of the devia

tions from ideality which are very different from Eqs. (5) and (6). The second effect is the non-

additivity of pair bond interactions.

III.3 Corrections for Nonrandom Mixing: The Symmetric Approximation

For the case in which AE is not very small relative to RT, corrections for nonrandom mixing

of the ions must be included. Flood, F^rland, and Grjotheim have given a preliminary discussion

of nonrandom mixing. Explicit calculations based on the nearest-neighbor quasi-lattice model

have been made by Blander, ' and Blander and Braunstein.'2

In the following sections approximations based on the quasi-lattice model will be used to cal

culate the effect of nonrandom mixing (or associations) on the calculated thermodynamic proper

ties of the model system. These calculations will also be related to conventional association con

stants for associations of the A and X ions to form "complex ions"

OTA+ + nX"^=iA X Hm'n)
m n

and will be used to illustrate some of the properties of these constants. It should be noted that

some of the relations derived may also be derived without the use of a quasi-lattice model. The

model is useful in defining the parameter Z and in the statistical counting in the theoretical calcu

lations.

In dilute solutions of A and X ions in BY most of the associated species (or "complex

ions") AmXn lm "' are isolated from one another by solvent B and Y~ ions and are easily defin
able. This is in sharp contrast with solutions having only one kind of anion where complex com

pounds are not easily defined since all cations will have the same anions as near neighbors re

gardless of the properties of the solution.

The symmetric approximation is essentially the quasi-chemical theory of Guggenheim.63 In

this approximation as in the others in section III only nearest-neighbor interactions are taken into

account. The assumption is made that the interaction of any given adjacent pair of ions is the

same independent of the local environment. A given A ion may interact as many as Z X" ions and

a given X" ion may interact with as many as Z A ions with the relative energy of each interaction

being Ae. The total number of the pairs A+-X", B+-X", A+-Y", and B+-Y" is Z(nA +«B)U. If Y'
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is defined as the fraction of positions adjacent to the A ions that are occupied by X ions, then

the number of pairs of each kind and the total energy of such pairs are given below:

Total Number

z„Ao-Y'))a =*;-s;

Z(nc-nAY')\l =S'b

ZnAY^=S'a

Z(nB-nc +nAY')U =R'b-S'h 0

For simplicity the relative energies of the pairs other than A -X~ are arbitrarily set at zero. This

makes no difference in the final results. R' and R', are the number of positions adjacent to all the

A and B ions respectively; 5' is the number of positions adjacent to the A ions occupied by X

ions; and Sf is the number of positions adjacent to the B ions occupied by X ions. The number

of ways of distributing these pairs, a>', is

(*; + /?;)!

Type cDf Pair

A+.•Y~

B+-•x"

A+.•x"

B+-•y"

Total E

0

0

nergy

Zn .
A

Y 'Ah

a>'= . (III.3.1)
s (R' -S')\S'\(R'-Sf)\S'\

v a b' a ^ b b' b

As in the quasi-chemical approximation, when <u ' is summed over all possible values of Y ', the

value for the total number of configurations is incorrect. A normalizing factor can be calculated to

correct this so that the combinatory formula is

^^K^-^-H^-H^a^K^^x^^y^' (l"'3'2)
where the superscript dagger (t) on a symbol signifies the value of that quantity for a random dis-

tribution of ions so that Y = N„.

The most probable distribution is obtained by maximizing fl' under the condition of constant

total energy and constant number of ions involved and is given by

NX~NAY

1- y \1 -NA- Nx + NAY;

where /3 = exp (-AE/RT), and where the absence of a prime (') on Y (or fl ) signifies the value of

that quantity in the most probable distribution. The total energy is

-AET = ZnAYAE =-AHT , (111.3.4)

and the total entropy of mixing is

AST = k lnfl5 . (111.3.5)

/3, (111.3.3)
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The total Helmholtz free energy can be calculated from Eqs. (4) and (5). The following equation is

obtained for the partial molar free energy by differentiating the Helmholtz free energy

CAY-fAY =RTlnWAWY (l^) ' (l"-3'6)
where /iAy is the chemical potential of AY in its standard state* and

/l-y\z

Because of the symmetry of the problem, Eq. (7) is valid for all of the components by merely rede

fining Y and AE.

In this approximation (as well as the random mixing approximation) the assumption of the non

interference or additivity of pair interactions has been made so that the energy of attachment of an

A or an X- ion to any X" or A ion respectively is always Ae independent of the number of other

ions attached to the A or X~ ions taking part in the attachment. Thus the energy change for the

process

A X +(m-n) + A+=^A ..X +<m +1-">
m n y m +1 n

and for

A X +(m~"> + X" ;=^A X +(™-"-D
m n N m n +1

are the same and are independent of the values of m or n. As will be discussed later this places

restrictions on the relative values of the successive association constants. The A and X ions

associate if Ae < 0 and Y> Nx and they will be solvated by the B andY ionsifAe>0 and

V< Nx. When Ae =0, Y= Nx and the mixture obeys Temkin's definition of ideality.

III.4 Comparison of the Symmetric Approximation with the Random Mixing Approximation

Calculations from Eqs. (III.3.3) and (III.3.7) probably lead to a more realistic description of

reciprocal systems than calculations from (III.2.5) and (III.2.6). For a mixture AY-BD, the upper

consolute temperature, T , can be calculated from the condition

(«?flAY/rfNAY) = (^NANYyAY/rfNAY) =0 .

ST 0 **Note that in the model fl. Y= fl. v = ^AY '^ *ne so'venT has an ion in common with AY. The most con
venient standard state to use if ft is not the same as fl in a real system depends on the concentration of

solutes. For example in a solution dilute in A or Y , fi v is convenient and in the solvent AY, //»Y is
convenient.
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The problem is simplified because of the symmetry of the model so that the upper consolute tem

perature falls at NA = N„ = Nx = NY = L. The solution is

ZAE Z-2 4 16 8
- + -—, +—
Z 3Z2 Z

-2Zln. =4+-+—2+~ + (111.4.1)
RT Z

c

For very large values of Z, Eq. (1) approximates Eq. (II1.2.7).

Z zAe/rt
c

4 5.5

5 5.1

6 4.9

oo 4.0

As can be seen from the above table, for a given value of ZAE, nonrandom mixing gives rise in

this case to a lower calculated consolute temperature than is calculated under the assumption of

random mixing. In Table 11 it can be seen that the consolute temperatures calculated from the

symmetric approximation are less unreasonable than those from the random mixing approximation

using the same parameters in the calculation. The parameters, Ap , are those given by Flood,

Fykse, and Urnes. It has been assumed that Ap = ZAE, and a reasonable value of Z = 4 has

been used in the calculations.

A calculation of yAY from the two approximations is also given in Table 11 along with values

measured at the liquidus temperature at 50 mole %. The symmetric approximation (again for Z = 4)

Table 11. Calculated and Measured Parameters at 50 Mole %

AY-BX LiF-KCI51 LiF-NaCI64 NaF-KCI51

Ap° (= ZAE) (kcal/mole) 17.1 9.1 8.0

Random mixing approximation

(Tc (°K) 2150 1140 1010

yAY 7.8 3.2 2.7

Symmetric approximation (Z = 4)

Tc (°K) 1560

^AY 4.7

Measured temperature (liquidus) (°K) 1045

y (from measurements) 3.2

y at liquidus temperature where AY is the alkali fluoride.

830 730

2.8 2.4

973 1010

2.6 1.8
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leads to values of the activity coefficients of LiF and NaF, which are much closer to those de

rived from the measurements than those calculated from the random mixing approximation. The dif

ference between the experimental results and the calculations from the symmetric approximations

is small enough so that the correction for long-range interactions proposed by F^rland and men

tioned in section III.2 may be large enough to account for the differences.

To illustrate this for a particularly favorable case, in Table 12 are given values of y. ._

[yL!F, oas)] in LiF-KCI mixtures calculated from the liquidus temperatures ,64 using the heats
of fusion in Table 1. Also given are values of yL-F calculated from the random mixing and the
symmetric approximations [y. .c, J. In the last column is given

' rr ' L i F (symm) 3

(-AlogyL.F/N2c|)
' L iF(symm) / ,

-log- /N2C|
'LiF(m«os)/

where, in this case, NK = Nc| = NKC|. The form of this quantity (A log yLiF) is consistent with
the form of the relation given by FoVland5 for the correction factor, Alog yAY, which is to be
added to log yAY in order to account for the influence of interactions of longer range than nearest
neighbors when these interactions obey the equations for regular solutions

RTA log yAy =N2 AX>Y +N2 AA#B +NBNx[NA(Ay - Ax) +Ny(AA - AB)] . (111.4.2)

The terms Ax and Ay are related to the deviations from ideality in AX-BX and AY-BY systems re
spectively and AXY accounts for the same type of long-range interactions as Ax and Ay but in mix
tures containing both X and Y ions. Similarly AA and A„ are related to the deviations from ide
ality in AX-AY and BX-BY systems respectively and in mixtures containing A and B AA refers
to the same type of interactions as AA and A_. The magnitude of AA _ and Ax y are probably

Table 12. Activity Coefficients of LiF in the LiF-KCI Quasi-Binary

NLiF

^LiF yLiF(symm)

KaLiquidus Temperature
From

Measurements

Symmetric

Approximation

Random

Mixing yL [F(meas)/

1078 0.90 1.10 1.13 1.08

1068 0.80 1.35 1.45 1.38 0.72

1056 0.65 1.98 2.40 2.71 0.68

1053 0.60 2.30 2.93 3.70 0.67

1045 0.50 3.24 4.72 7.84 0.66

1040 0.46 3.77 5.88 11.17 0.67

1028 0.35 6.28 12.02 34.36 0.67

1020 0.30 8.33 17.97 62.44 0.68

1005 0.25 11.44 29.05 123.6 0.71
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closely related (perhaps a weighted average) to AA and AB and AY and Ay respectively. These

parameters are discussed in section II. In the system discussed here (LiF-KCI) the last term in

Eq. (2) is probably small. From the last column of Table 12 a value of (Axy + AAB) of —3200
cal/mole is calculated if the last term is neglected. This is reasonable for the interactions of the

ions involved (see section II). This unexpectedly good agreement is probably fortuitous in view of

the approximate nature of the equations for regular solutions as applied to molten salts and the

agreement may not be as good in other systems. However, further detailed investigations of such

systems, especially in reciprocal alkali halide mixtures, would be interesting for comparison with

these considerations where the symmetric approximation is used for nearest-neighbor interactions

and Eq. (III.4.2) is used as a correction factor. This correction factor when included in the calcu

lations of the consolute temperatures, T , will lead to much more realistic values than are calcu

lated from Eq. (1).

It should be borne in mind that neither the symmetric approximation nor any other approxima

tion which contains the implicit or explicit assumption of the additivity of pair interactions can be

generally valid for all molten salts and that neither can give better than semiquantitative results.

This will be discussed in a later section.

If Eq. (111.3.3) is solved for (1 - y) in terms of (/3 - 1), NA, and ND, then

—b+ Jk' —4ac(l_y)= V
la

and for small values of ac/b ,

c I ac 2a2c2 \
(l-y)=— 1+—+ +... , (111.4.3)

b\ b2 b4 I

where fl = NA(j8 - 1), b= [1 + (NBNX _/VANY)(/3- 1)], c =-Ny. Substituting Eq. (3) in (111.3.7)
and taking the logarithm of y. Yone obtains

/ ac 2a2c2 \
Iny =Z In 1 +—+ +... - Z In b . (Iil.4.4)

b2 b4

The meaning of the symmetric approximation is made clear by Eq. (4). Since NA and Ny appear in
exactly the same way in b and in the product ac, the interchange of particular numerical values of

NA and Ny will lead to the same value of yAy. If NA and Ny are variables, then the function yAy
is symmetric about the line NA = Ny. By expanding the logarithms in Eq. (4), one obtains

Z
lnyAy =-ZNBNx(/3-l) +-[(NBNx)2 +2NANBNx/Vy]03-l)2

Z

-T[(NBNx)3 +6(NBNx)2NANy+ 3NBNx(NANy)2](/8-l)3 +... . (111.4.5)
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The remaining terms are sums of products of (/3 —̂ ^ and (NR Nx)^—"(N . Ny)n, where p > 3 and
p > n = 0. If (/3 —1) is smal I, then only the first term is important and

(^-l) =(e-AE/^-l)=---+.../
RT

so that Eq. (5) reduces to Eq. (111.2.5), which was calculated from the random mixing approxima

tion. For small enough values of NA Nx or N_ Ny the higher terms in Eq. (5) are small relative to
the first, so that

In yAy = -NBNxZ([3-\) , (lil.4.6)

which has the same form of the concentration dependence as Eq. (111.2.5) but does not contain the

implication that there is random mixing of the ions.

III.5 The Asymmetric Approximation

One of the weaknesses of the symmetric approximation is the assumption of the additivity of

pair interactions which means that in dilute solutions, for example, the energy for forming the pair

AX from A and X in the solvent BY is the same as forming AX2 from AX and X and A2X from

AX and A . Measured association constants in dilute aqueous solutions indicate that this is not

valid, especially if the central cation is polyvalent. Thus, any generalization of the theory which

includes a description of polyvalent cations and other special interactions must include a correc

tion for the fact observed in aqueous and molten-salt solutions and discussed in a later section

that species such as, for example, Cd-CI are not stable in dilute solutions whereas CdCL is

Stable in solution. In the theory which follows only monovalent ions are considered for simplicity.

However, most of the relations derived for the association constants in dilute solutions apply to

systems containing polyvalent ions as well.

The approximation given in this section is the asymmetric approximation which accounts for

species as AX (CdCL, CdCL-, AgCI,-, AgCI, ~) and neglects ionic groupings as A X

(Cd2CI , Ag2CI ;. The applicability of this approximation to real systems will depend on the
specific nature of the system. The purpose of the approximation is to derive relations which relate

the influence of asymmetry of the ionic interactions to the thermodynamic properties of the solu

tion.

In the asymmetric approximation the anion portion of the lattice is divided into two regions,

a and b. Region a contains all anion positions adjacent to one A ion and (Z —1) B ions, and re

gion b contains all other anion positions. In a solution dilute enough in A to neglect positions

adjacent to two A ions, the number of positions in region a is ZnA\i = LA and in region b is
H,(«x + ray) - LA = LR. The X ions in region a are more stable by the energy Ae. If Ae is nega
tive, the concentration of X ions in region a will be greater than in region b or, in other words,

there will be an association of A and X ions. If X' is the concentration in ion fraction units of
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the X ions in region a, then it is also the fraction of positions adjacent to A ions occupied by

X ions. The A and X ions associate when X' > N„ and are solvated when X' < N„. If Al' and
x x A

Al' are the total number of X ions in region a and b respectively, then M'A = Zn AX'X\ and Al' =
«x U—Al'. The total number of ways of mixing the anions in the anion region of the lattice, and
the cations in the cation region of the lattice, ft', is

ft'

L'A\L'B\[(nA + nBm\

a (LA-AlA)!A1A!(LB-AlB)!AlB!(KAri)!(«Bn)!
(111.5.1)

By using Stirling's approximation for the factorials and maximizing ft' under the condition of con

stant total energy and constant total number of particles, the most probable distribution is calcu

lated:

X

1 -X

NX-ZXNA

1 -ZNA(1 - X) -Nx

The total energy of dilution in the solvent BY is

-AEDi| =Z«AXAE,

and the total entropy of mixing is given by

AS_ = & In ft .
T a

J8. (111.5.2)

(111.5.3)

(111.5.4)

By combining Eqs. (III.5.3) and (111.5.4), the total Helmholtz free energy of dilution can be calcu

lated.

Total Number Total Energy

Zn.fi
A

0

(«x + rcy —ZnA)ll 0

Zn.xW
A

Zn.XAE
A

(nx-ZnAX)Yl 0

Differentiating the total Helmholtz free energy to calculate the chemical potentials of the four

salts AX, AY, BX, and BY when the solvent is BY, one obtains

1Z-I
fAX^AX NY -ZN . X

A A
X

RT
-= In N ,

1-ZNA(1 -X)-Nx (1-X)' 1 +
0(1 - x)

^AY -^AY

RT

*

^BX ~ ^BX

RT

|n/VA(l -xr

In Nr

|8(1 -X)J

"X-Z^A*

1 -ZN.

z-i

(111.5.5)

(111.5.6)

(III.5.7)
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RT
In N,
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1 -ZNA(1 -X)-Nx

1 - ZNA
(111.5.8)

In the asymmetric approximation a given A ion can have as many as Z X~ ions as nearest

neighbors, but a given X ion can only have one A ion as a nearest neighbor. Thus only associa

tions to form the groupings AX ^ -"' are taken into account and the groupings containing more

than one A ion are completely neglected. The energy of attachment of each successive X ion to

a given A ion is the same so that the energy for the association

AX +(,-B) + X" -AX .-"
72+1

O^B^(Z-l),

is Ae independent of the value of n. This places restrictions on the relative values of the succes

sive association constants as will be shown in the next section.

III.6 Conventional Association Constants

The meaning and interpretation of the symmetric and asymmetric approximations can be made

more evident in terms of conventional association constants in dilute solution. If the ions A and

X of the two solutes AY and BX in dilute solutions in the solvent BY associate as

A++X"^=^AX

AX + X"^=^AX2-

AX2"+X"^=^AX32", etc.

AX +A+ *=^A,X+, etc.

with the association constants being respectively K., K , K etc., and K.2, etc., then the associ

ation constants may be related directly to parameters contained in the two approximations. It has

been shown that the thermodynamic association constants may be evaluated from the derivatives

of In yAy or In yBX by the relations which have been derived under the reasonable assumption that

in very dilute solutions all species obey Henry's law.

d In y
AY

dR
BX

d2 In yAY

kAY=0

;BX=0

/(9lnyBXN

dR
AY

d2 In yBx

^BX dRBXdRA
AY=0

!BX=0

AY=0

!BX=0

-K,,

= Kj —2Kj K2 ,

lAY=0

!BX=0

(111.6.1)

(111.6.2)
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d2 lnyAy \ /d2]nY*Bx

dRBXdRAY L \ ^AY
K2-2K}K]2, (111.6.3)

RAY=0 RAY=0
RBX =0 RBX =0

where R.. = n../nD „ and where n.. is the number of moles of the solute component ij (AY or BX in1/ i; B Y ij r i \

this example). The association constants are in mole ratio or mole fraction units which are the

most rational units in molten-salt solutions. These relations are not unique for calculating the as

sociation constants and many other derivatives of functions of the activity coefficients may be

used. It should be noted that there is a single limit of the derivatives of the single-valued func

tions In y.. at infinite dilution of all solutes. Therefore these equations define true thermodynamic

association constants under conditions where the calculation procedure includes solutions dilute

enough so that all species may be reasonably expected to obey Henry's law. By using Eqs. (1),

(2), and (3), expressions for association constants have been calculated from the asymmetric and

symmetric approximations [Eqs. (III.5.2), (III.5.6), (III.3.3), and (III.3.7)] and are given below:

Association Constant Asymmetric Approximation Symmetric Approximation

k, zip-}) Z(/3-l)

k2 (£rI)(^-i) (^^-n

*3 (£fi)(^-1) (£7^)(^-1)
Z -n+\\ / Z -n+1\

*12 ~\ (^-)<0-l)
This table makes the differences between the symmetric or quasi-chemical and the asymmetric ap

proximations clear. In both approximations

K, 2K, 3K, nK
— = = = , \^n^Z, (III.6.4)
Z Z-l Z-2 Z-«+1

which are the statistical ratios of Adams and Bjerrum. ' Thus these approximations are shown to

be equivalent to the Adams-Bjerrum ratios in dilute solutions. In the symmetric approximation

K2 = K.2 but in the asymmetric approximation the effective value of K.„ is —/., which is essen

tially equivalent to zero. Although a negative value of an association constant is meaningless

thermodynamically, it can be understood in terms of the model. If all the ions are randomly mixed

and the solution is ideal, all the K's are zero. Since in the asymmetric approximation the condition

has been introduced that no more than one A ion be a nearest neighbor to any one X ion,then

there is less than a random number of A ions in positions near an A -X ion pair. Thus the effec

tive value of K.2 must be less than zero. This will occur if the A ions repel each other.
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It is clear that these two approximations can correspond exactly to real systems only for

special cases or in very dilute solutions, where only the first association to form AX is important.

However approximate these models are, they are still useful for semiquantitative descriptions of

solution behavior. Moreover, as will be shown in the next section, both models lead to a predic

tion of the temperature coefficient of the first association constant, K., for the association of mon-

atomic ions which is correct within the experimental precision of measurements which have been

made.

III.7 Comparison of Theory with Experiments in Dilute Solutions

Measurements of yA NQ , the activity coefficients of AgN03 in the mixture Ag , B , CI , and

NO- dilute in Ag and CI , have been made using the concentration cell

Ag
AgNO,

BNO,

AgN03

BCI

BNO,

Ag, (III.7.A)

where B is an alkali metal ion (or a mixture of alkali metal ions). In Fig. 21 are plotted measured

values of - log y. ..n vs R„ _. at 385°C at two values of R . ... . The solvent BNO, in thi s='AgNO. KCI AgN03 3
case is a 50-50 mole %mixture of NaN03-KN03. The activity coefficients decrease with increas

ing concentration of KCI, the decrease being smaller the larger the initial concentration of AgN03.

Obviously the concentration dependence of—log yA N_ is very badly approximated by (III.2.5) or

(III.2.6) and the magnitudes of—log yA .... would require very improbable values of ZAE or Ap
(about—300 kcal/mole). This large discrepancy is undoubtedly related to nonrandom mixing of the

ions. A comparison of these measurements with calculations based on the asymmetric and symmet

ric approximations is made in Fig. 21 and shows that the measured concentration dependence of

—log yA N_ corresponds only roughly to these approximations. At low RA N_ both approxima

tions are essentially the same and at the higher chloride concentrations indicate a lower activity

coefficient than is measured. This, probably, stems from the fact that in this system

K2 < (/3-1) .

The activity coefficients at the higher concentrations of AgN03 lie between the two approximations

1 (Z~] iindicating that —L < K,2 < ( )(/3 —1). The same is true if the solvent is pure NaN03 or

KN03 with measurements in KN03 being closer to the asymmetric and in NaN03 to the symmetric

approximation. These comparisons indicate that these two approximations, although much more re

alistic than the random mixing approximation, can be, at best, semiquantitative. One reason for

*ln these dilute solutions R . .._ = N . and R„-, = N_..AgN03 Ag KCI CI
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Fig. 21. Comparison of the Concentration Dependence of Measured Values

of -log yAgN0 in NaN03-KNC>3 (50-50 Mole %) Mixtures with Theoretical
Calculations Based on the Symmetric and Asymmetric Approximations.

this is the nonadditivity of pair bond interaction energies in dilute solutions. This means that the

relative values of successive association constants do not, in general, correspond to the values

given on page 76. In the next section a generalization of theory will be made which will include

the possibility of the nonadditivity of pair bond interactions.

The theoretical evaluation of K., however, is meaningful for certain systems and in solutions

dilute enough in A and X so that the most important species is AX, the temperature dependence

of the activity coefficients (and of K.) is predicted by these two approximations. Measurements

of-logyA NQ in dilute solutions of Ag and CI- in the three solvents NaN03,70 KN023'94 and
50-50 mole %NaN03-KN03 mixtures were compared to theory. By comparing the approximation

which was closest in concentration dependence to the measured value of -log yA N_ at low con

centrations of Ag and CI values of K. could be evaluated and are given in Table 13. This pro

cedure for evaluating K. has been shown to be equivalent to more conventional extrapolation pro-
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Table 13. Values of AE. Obtained from the Comparison of Theory with Experimental Data

-AE, (kcal)
T(°K) K.=Z(fl-l)

Z=4 Z=5 Z=6 '

Asymmetric Approximation, Ag , K , CI , N03

623 6.12 5.85 5.62 553

643 6.17 5.89 5.66 498

658 6.21 5.93 5.69 460

675 6.17 5.87 5.64 396

696 6.18 5.88 5.63 348

709 6.17 5.86 5.62 315

Symmetric Approximation, Ag , Na , CI , NO.,

604 5.10 4.83 4.62 277

637 5.12 4.84 4.62 226

658 5.17 4.88 4.65 205

675 5.10 4.81 4.57 176

696 5.13 4.83 4.59 160

711 5.12 4.81 4.56 146

773 5.14 4.82 4.55 110

Asymmetric Approximation, Ag , (Na , K ), CI , N03

506 5.6 5.4 5.2 1050

551 5.57 5.33 5.13 644

658 5.67 5.38 5.15 302

752 5.72 5.40 5.13 180

801 5.62 5.2g 5.0Q 133

K. in mole fraction units.

(a)

cedures25 if used correctly. To evaluate the parameter AE(AE,) contained in the theoretical ex
pression for K. a value of Z must be assumed where

K, = Z(j8 - 1) = Z[exp (-AE/RT) - 1] . (111.7.1)

In molten salts a range of values of Z which covers all reasonable possibilities is 4 to 6. In Table

13 are given values of AE. calculated for values of Z = 4, 5, and 6. In any one system and for any

one value of Z the values of AE. thus calculated, within the estimated experimental error, do not

vary with temperature. This means that Eq. (1) correctly predicts the temperature coefficient of K,

in these systems. In the NaN03-KN03 system this prediction is correct over a range of 295°C and
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for a variation of K. by a factor of about 8. At low enough concentrations of Ag and CI so that

the only important species is AgCI the variation of—log yA N0 with temperature, within the ex

perimental precision, is also correctly predicted. This is illustrated in Fig. 22 which gives a plot

of— log yA NO in a dilute solution of Ag and CI in NaN03 at several temperatures. The dashed

lines were calculated from the symmetric approximation using the parameters given in Table 13.

Using these essentially constant values of AE. leads to an excellent correspondence of the calcu

lated and measured values of—log yA N_ at low concentrations of Ag and CI .

0.4

NaCI

UNCLASSIFIED
ORNL-LR-DWG 44359

4 (x10~3)

Fig. 22. Comparison of the Temperature Dependence of —log yt uq in
NaN0» with Theoretical Calculations.
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The theory, in essence, leads to a prediction of the "configurational" contribution to the en

tropy of association so that from measurements at one temperature one may also calculate the heat

of association, AH'.:

d\nK. -AH'. d\r\Z(fi-\)
(111.7.2)

d(\) R d(\)

Since AE. is independent of temperature,

AH', =AEjJL-), (Nl.7.3), - a^,

where it is to be remembered that AE. can be calculated from measurements at a single tempera

ture. Equation (3) for AH', may be confirmed (within the experimental precision and within the

range of values of AE, for the three values of Z) from the values of K, given in Table 13. Other
reported values of AH J which differ from Eq. (3)38 were calculated from too few points and over
too short a range of temperatures to be significant.

Ill.8 Generalized Quasi-Lattice Calculations

The comparison of both the symmetric and asymmetric approximations with experiments make it

evident that less stringent restrictions on the relative energies of association are necessary for a

comprehensive theory. In this section a generalized calculation based on the quasi-lattice model

will be discussed. The purpose is to calculate more general expressions for some of the higher

association constants.

For simplicity, the assumption is made, as in the asymmetric model,that the solution in the sol

vent BY is so dilute in A ions that one can neglect all groupings of A and X ions containing

more than one A ion. From a calculation of the partition function for the assembly of A , B , X ,

and Y~ ions calculations were made of the Helmholtz free energy, the chemical potential for the

component AY, and, hence, the activity coefficients of AY, yAY/ in terms of the ion fractions of the
ions, Z and t3., where /3. = exp (-AA./RT) and AA. is the "specific bond strength" or the "spe

cific Helmholtz free energy change" for the association

AXJ.^ +X-^AX'.1-'), l^Z. (III.8.A)

In this approximation AA , ^ AA2 ^ AA3 ^ AA:- in general. It must be kept in mind that the symbol
AXP-!' represents an A+ ion having i X~ ions and (Z —i) Y~ ions as nearest neighbors. Thus

(AA ./Tl) is the free energy change for exchanging one X ion in the body of solution with a par

ticular Y~ ion adjacent to the A+ ion in the grouping AXJ2"j'\ The term AA;. is related to partition
functions for the individual ions involved in the association (A) (which is really an exchange of

ions) so that

fn1ki\
AA. = -RTln ^- , (111.8.1)

K^kiJ
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where Tfql- anc' ^iV- represent the product of the partition functions of the individual ions, k, in

volved in the association process (A) evaluated before and after the association process respec

tively. If the partition functions are separable so that

-E../RT
ki

*A» = **ie

where qk represents a partition function for the internal degrees of freedom of the ion of type k,
then

AA.
^r;

AE.-TAS. = (IE''-IE')- RT In-
i i ^ ki ki

w?i
(111.8.2)

and the "specific" entropy term, AS., contains only contributions from the internal degrees of free

dom and excludes statistical or combinatory factors for the groupings of ions. For negligible

changes in the internal degrees of freedom of the ions involved in the association process AS. = 0

and (dAA{/dT) = 0. This is the case for the values of AA . in the systems cited in Table 13.
The statistical mechanical calculation leads to the equations for some of the successive as

sociation constants (in mole fraction units)

K\ K2

K, = Z(fl, - 1),

(0,02-20, + 1),

(0,0]2-20, + 1),K,K,2 =

z(z --1)

2!

Z(Z --1)

2!

Kl K2K3 =
Z(Z- l)(Z-2)

3!
(0,0203-30,02 +30,-l),

(III .8.3)

(a)

(b)

(c)

(d)

(e)
Z(Z- l)(Z-2)(Z-3)

4!
K,K2K3K4=• (0, 020304-40,0203 +60,02-40,+ 1)

Equation (III.8.3a) is the same as the expression for K, given in the table on page 76 if AA =
AE,. The terms in Z are spatial and statistical factors and the terms in 0. are related to the bond

energies. For the case in which AA, = AA2 = AA3 = AA. and 0, =02 =03 =0., the statistical
ratios of Adams and Bjerrum apply.

Some of the relations derived from (III.8.3) exhibit surprising properties. For example by di
viding (III.8.3b) by (III.8.3a) one obtains the expression

K, = [(Z-l)/2] (0,-D +
'02-0,

(111.8.4)

It can be seen from (111.8.4) that K2 depends not only on Zand 02 but also on 0,. If 02 is small,
this dependence may be relatively significant. If, for example (2 - 1/0,) >02 > 1, then there ex-
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ists a tendency for the association* of AX with X to form AX2 and yet the values of K„ may ap-
**pear to be negative. This unusual and apparently contradictory result arises because of the re

quirement that the conventional association constants, K., be almost zero in an almost ideal solu

tion. The standard states for some of the associated species under this requirement which is

inherent in the commonly accepted methods of describing associations in solution cannot be under

stood in a simple way and lead to unusual properties for weak associations. An analogous situa

tion occurs when gas virial coefficients are interpreted in terms of clusters. '

The assumptions made in the calculation of Eq. (3) are that the z'th X ion attaching itself to

an A ion can do so in (Z —i + 1) equivalent positions. Different relations would be obtained

under different assumptions. If, for example, only a linear AX2 ion triplet can form, the second

X ion has a nonzero value of AA- in only one of the (Z —1) sites near an AX ion pair which is not

already occupied by an X ion. For linear AX2 then

K, Kl2 =[Z(Z - l)/2!]{[0, 02/(Z - 1)] +1- [Z/(Z - 1)]0,} (111.8.5)

and

K2- /2
/02-1

The stepwise association constant for formation of linear AX2 is K2 and would be smaller than

K2 for a nonlinear grouping even with the same values of Z, 0,, and 02. Thus the comparison of

the Eqs. (3b) and (5) demonstrates in this simple case the general principle that the greater the

tendency toward "directionality" in a "bond" the lower will be the association constant, if all

other factors are equal.

Equations (5) and (3a) lead to conclusions differing from those of Bjerrum on the ratios of

successive association constants for linear AX2 . For values of 0, = 0. » 1 for example,

K./kL = 2Z, where Z is a maximum coordination number. In Bjerrum's derivation this number is a

characteristic coordination number N. For a common case in which 03 « 02, N is two and much
smaller than Z. The error in the calculation of Bjerrum arises from the fact that when the total pos

sible number of X- ligands is restricted to N in his derivation, the total number of positions adja

cent to a spherical A ion which are available to the first ligand is simultaneously limited to N al

though the first ligand is actually able to attach itself in any one of Z positions.

The equations discussed in this section can be derived for nearest-neighbor interactions inde

pendently of the lattice model. The coordinator number Z in such a derivation would be the ratio

of the volume of the first coordination shells adjacent to a mole of A ions to the volume of a mole

of solvent anions. Such a derivation would apply to polyvalent cations.

*lf AA . is negative and 0. > 1, there will be a tendency toward the association of AX. ~J and X to

form AX; '.
i

**Negative values of K~ are meaningless thermodynamically, and apparently negative values usually
mean a repulsion of the ions involved rather than the assumed association.
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III.9 Association Constants in Dilute Solutions

In this section a compilation is given of association constants (in mole fraction units) which

have been measured in reciprocal molten-salt systems. Measurements of associations involving the

Ag ion have been largely made with cells of the type (111.7.A) and the most reliable measurements

for associations involving Tl , Pb2+, and Cd with halides from cells of the type

A(N03)„
AgX(solid)

BX

BNO,

Ag

AgX(solid)

BX

BNO,

Ag, (III.9.A)

using silver-solid-silver halide (AgX) electrodes where A isTI , Pb , or Cd . The emf of

cells (111.7.A) and (III.9.A) may be related to the activity and activity coefficients (y ) of AgN03

or BX respectively. To avoid confusion, it should be emphasized that these activity coefficients

are defined so as to encompass all solution effects including ionic associations ("complex ion"

formation). At concentrations where Henry's law is obeyed by all species (probably true at con

centrations below 0.5 mole %) it represents only those deviations from ideal solution behavior

which are caused by association in solution. This usage is simpler than the usage most often em

ployed in aqueous solutions where deviations from ideal solution behavior are subdivided into "ac

tivity coefficient" effects (related to the ionic strength) and an effect due to associations. Ther

modynamic association constants may be computed from these measured activity coefficients by an

extrapolation method. Some of the association constants cited here have been recalculated from

the data in the literature. In cases where errors in calculating association constants may be sig

nificantly larger than the errors stated by the original workers and not enough data were available

to correct the calculations, the association constants are given in parentheses or omitted. From

the tabulated association constants (Tables 14 and 15), values of AA . were calculated from Eqs.

(III.8.3) for Z = 6 and are given in Table 16 for monatomic ions. For other values of Z, AA. would

be somewhat different (for Z = 4 the AA . would be more negative by about 0.4 to 0.6 kcal) but the

differences between the different values would be about the same. The differences in AA . in Table
i

16 are related to the association constants (for K. » 1) by AA '- AA '.' = -RT In K'./K".
i ' i i ii

In every case where measurements were made at more than one temperature for associations in

volving monatomic ions only, values of AA . for a given association in a given solvent and for Z = 4,

5, or 6 were independent of temperature within the experimental uncertainties. Thus it appears

that, for monatomic ions, the temperature variations of K7 and K,2 as well as of K, may be pre

dicted from Eqs. (111.8.3) by using constant values of AA ., and it appears that the entropy of as

sociation is largely the "configurational" entropy calculated from the quasi-lattice model. For

*There did appear to be trends in the variation of AA . with temperature in some cases. The total varia-
1 +tions were smaller than the experimental errors in all cases except for AA . for the formation of CdBr in 50-

50 mole %NaN03-KN0_, where the variation of AA . was slightly larger than the estimated experimental
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Table 14. Compilation of Association Constants from EMF Measurements (see also Table 13)

Associating
T (°K) Solvent . K,

v ' Ions I

675 NaN03 Ag++Br" 633
711 500

733 430

773 325

606 NaN03-KN03 (53-47 mole %) Ag ++CI~ 381
647 302

649 Ag + Br" 1,008
687 781

528 Pb2++Br" 199 39
576 153

579 67

529 Cd2++Br" 1,170 550 39
547 1,030 510

571 810

513 NaN03-KN03 (50-50 mole %) Tl ++Br~ 31 15 27
519 Ag++CN~ 230,000 140,000 80,000 10
559 220,000 105,000 60,000 93

599

513 Cdz"+Br~ 1,520 680 ~0 25

573

513 Cd^T+l" 5,330 2,200 ~0 25

563

513 Pb^+Br" 250 125 ^0 27

573 170 85 ~0 92

623 KN03 Ag ++Cl" 553 215 <40 94
658

709

676

711

725

747

773

675 Ag '+ I 5,420 2,700 3,555 2

636 Ag ++S0^2~ 11.6 132
681

706

722

513 LiN03-KN03 (80-20 mole %) Cd^+Br" 4,300 1,700 26
513 (65-35 mole %)

444 (50-50 mole %)

513

513 (40-60 mole %)

513 (26-74 mole %)

553 (40-60 mole %) Tl ' + Br 56 30 27

K2 K\2 References

246 280 95

180 200

151 167

103 120

145 38

97

(360) 38

(199)

Tl + Br 31 15

Ag++ CN~ 230,000 140,000 80,000

220,000 105,000 60,000

190,000 50,000 36,000

Cd2++ Br" 1,520 680 ~o

990 450 ~0

cd2++r 5,330 2,200 ~0

3,130 1,300 ~o

9+ -
Pb"2 + Br 250 125 ~o

170 85 ~o

Ag ++Cl" 553 215 <40

460 169 20

315 117 <40

Ag + Br~ 932 370 293

768 285 230

728 273 208

617 228 174

540 195 145

Ag++ l" 5,420 2,700 3,555

Ag ++S042~ 11.6

12.1

12.7

13.3

Cd2++ Br" 4,300 1,700

3,600 1,600

7,500 3,300

3,000 1,300

2,500 1,100

2,300 1,000

Tl++ Br" 56 30
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Table 15. Association Constants from Other Measurements

Solvent T (°K) Species K. Method

NaN03129

LiN03-KN0335 (50-50 mole %)

580 CdCI + 190 ±50 Cryoscopy

PbCI + 60 ±20 Cryoscopy

453 CdCI + (900)a Polarography

PbCI + 270 ±80 Polarography

523 CdCI + (250) Solubility

573 CdCI + (300) Solubility

523 PbCI + (200) Solubility

573 PbCI+ (65) Solubility

NaN03-KN0341 (53-47 mole %)

associations of Ag with SO. ~ or CN- values of AA . decrease with temperature indicating an en

tropy of association larger than the "configurational" entropy of association. Values of the

negative of the "specific bond free energy" (where comparisons can be made) are in the order

S042- <CI- <Br" <I" <CN- and TI+< Pb2+< Cd2+< Ag+, which is comparable to the order
found in water and, in general, the values of RT In K, (K. in mole fraction units) are roughly com
parable to those found in water. Values of AA . (or AE.) do not correspond precisely to the pre

diction of Flood, FoVland, and Grjotheim (section III.2), but the relative magnitudes can be corre

lated with the heat (or free energy change) for the reciprocal reaction (lll.l.A). For the silver

halides for example, the heat changes for a reaction as (lll.l.A) are in the same order as AA .

and may be correlated largely with non-Coulombic (van der Waals) interactions.101 Superimposed
upon the non-Coulomb interactions is a reciprocal Coulomb effect illustrated in the two-dimensional

representation in Fig. 23.

The major change in the association of A and X is the interchange of nearest-neighbor A Y-

and B X pairs to form A X and B Y pairs as illustrated in the lower part of the figure. A cal

culation of the nearest-neighbor Coulomb energy change (for ions which touch each other) indicates

that this contribution to AA , is e 0/^AY + ^/^bx ~ ^by ~ ^ax' an^ nas tne sign 9'ven be-

Contribution to AA,

- rA<rB rx<rY

- rA>rB rX>rY

+ rA<rB rX>fY

+ rA>rB rX<rY
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Table 16. Average Values of "Specific Bond Free Energies," AA . (kcal/mole), for Z = 6
for the Association of Monatomic Ions in Molten Nitrates

Association
Solvent Composition (mole %)

-AA. -Aa2 -Aa,2 References
Ions LiN03 NaN03 KNO, 1

Ag+ + CI- 0 100 0 4.59 70

0 53 47 5.04 4.8 38

0 50 50 5.12 69

0 0 100 5.64 5.5 94

Ag + Br" 0 100 0 6.23 6.0 6.2 95

0 53 47 6.64 (6.2) 38

0 0 100 6.87 6.7 6.4 2

Ag ++l" 0 0 100 9.13 9.4 9.8 2

Tl++ Br" 40 0 60 2.1 27

0 50 50 1.8 27

Cd^ +CI 0 100 0 4.0 24, 129

Cd2++ Br~ 0 53 47 5.57 5.6 39

0 50 50 5.75 5.8 25

80 0 20 6.64 6.7 26

65 0 35 6.58 6.6 26

50 0 50 6.33 6.4 26

40 0 60 6.16 6.2 26

26 0 74 6.06 6.1 26

cd2++r 0 50 50 6.99 7.0 25

Pb2++Cl" 0 100 0 2.8 24, 129

Pb2++Br" 0 53 47 3.60 3.8 39

0 50 50 3.85 27, 92

with the magnitude being dependent on the relative differences in size. For example, for the asso

ciation of Ag+ and Cl~ in KN03 this contribution to AA, is about 2.6 kcal/mole more negative than
in NaN03 and for the association of Ag and Br- about 1.4 kcal/mole more negative in KN03 than
in NaNO-. This nearest-neighbor Coulomb contribution to the differences between solvents is in

the right direction but is over twice as large as the measured differences in AA, in these systems
given in Table 16. This is probably related largely to the influence of long-range interactions

which cannot be assessed for a realistic three-dimensional model but for a one-dimensional model

the long-range interactions can be shown to attenuate the effect.
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Fig. 23. Two Dimensional Representation to Illustrate the Reciprocal

Coulomb Effect.

Within the experimental errors the measured constants in mixtures of two nitrates (a and b) obey

the linear relations

In K,(in mixture) = Na In K,(in pure a) + Nfc In K,(in pure b) (III.9.1]

and

AA ,(in mixture) = N AA ,(in pure a) + Nb AA ,(in pure b) . (III.9.2)

Surprisingly, values of —AA. for the formation of CdBr and CdBr- are larger in LiN03-KN0- mix

tures the larger the mole fraction of LiN03 and are larger than in the corresponding NaN03-KN03
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mixtures. These particular association constants are, therefore, not related to the radii of the sol

vent cations by a simple monotonic relationship.

MISCELLANEOUS

Solutions of gases in molten salts are of interest to theoreticians because of their innate sim

plicity. The rare gases, mainly because they interact relatively weakly with most substances, form

the simplest of such solutions. Measurements of the solubility of helium, neon, argon, and xenon

have been made in molten fluoride solvents. ' All of the solubilities obeyed Henry's law

C,= KP(T)P. (1)

where C, is the concentration of gas in the salt in moles per cm of melt, Kp is a Henry's law con

stant, and P is the gas

theoretical treatment is

stant, and P is the gas pressure in atmospheres. A simpler method of expressing solubilities for

Cd =Kc(T)Cg , (2)

where C is the concentration of gas in the gas phase in moles per cm . The use of Eq. (2) and of

K , which is unitless, eliminates those trivial additive (and usually relatively large) contributions

to the entropy of solution which are related to the arbitrary choice of concentration units. Henry's

law constants for rare gases are given in Table 17; those for HF in NaF-ZrF . mixtures (discussed

in the following paragraph) are given in Table 18. The solubility of the rare gases increases with

an increase of temperature and with a decrease of the size of the gas atom. A calculation of the

enthalpy of solution and the standard entropy of solution was made by using the equations

d In K AH
P

d(\/T) R

and

d(RT In K )
C AS0

dT

and is given in Table 19. In all cases, the entropy of solution is a small negative number for the

rare gases. If the gas phase concentrations were expressed in pressure units (atmospheres), then

values of the standard entropy would be obtained by adding, to the entropies in Table 19, —R(] +

In R'T), where R'is the gas constant (cm atm/deg mole), and R is the gas constant in entropy

units. The free energy of solution (AE =-RT In K ) may be estimated roughly by the free energy

of formation of holes the size of the rare gas atom

cd
-RT In—= 18.08^2a = -RT In K ,

C
g

where d is the gas atom radius in Angstroms, and a is the surface tension. This approximation

neglects curvature of the holes and interactions of the gas and liquid.
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Table 17. Henry's Law Constants for Noble Gases

Solvent

LiF-NaF-KF (46.5-11.5-42.0 mole %) He

NaF-ZrF, (53-47 mole %)
4

Ar

Ne

Ar

Measured

•(°c)
/ mol" ^jxlO8 K x 103

cM 3
\ cm <atm/

600 11.3 ±0.7 8.09

650 13.7

700 17.5 ±0.2 14.0

800 23.0 ±0.7 20.3

600 4.36 ±0.20 3.12

700 7.51 ±0.22 6.00

800 11.18 ±0.26 9.84

600 0.90 ±0.04 0.645

700 1.80 ±0.04 1.43

800 3.40 ±0.03 2.99

600 21.6 ±1.0 15.5

700 29.2 ±0.7 23.3

800 42.0 ±1.3 37.0

600 11.3 ±0.3 8.09

700 18.4 ±0.5 14.7

800 24.7 ±0.7 21.7

600 5.06 ±0.15 3.62

700 8.07 ±0.08 6.44

800 12.0 ±0.6 10.6

600 1.94 1.39

700 3.56 2.84

800 6.32 5.56

By contrast, gases which interact strongly with components of the solvent have much higher

solubilities than the rare gases. The solubility of HF in NaF-ZrF. mixtures for example is much

higher than of the rare gases and increases with an increase in the concentration of NaF indicating

that the strong interactions (negative) of HF in solution are with NaF. Measurements of the solu

bility of water in molten LiCI-KCl mixtures however indicated that the water solubility did not in

crease significantly (except at 390°C) with increasing concentrations of LiCI with which com

ponent water has a relatively strong interaction. The data are given in Table 20. Note that the

units are in micromole of H20 per mole of solution per millimeter pressure. The heats of solution

appeared to be —5 and -11 kcal/mole in the 50 and 60% mixtures respectively.
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Table 18. Henry's Law Constants for HF Dissolved in Molten

NaF-ZrF . Mixtures

Mole % NoiF

Kpx 105 (moles/cm atm)

600°C 700°C 800°C

45.0 0.78 0.65 0.51

53.0 1.23 0.93 0.73

60.0 1.53 1.03 0.81

65.0 (2.1if 1.46 1.06

80.5 (12.80) (7.20) 4.43

Parentheses indicate extrapolated data.

Table 19. Enthalpies and Standard Entropies of Solution

Solvent Gas Aw (cal/mole) AS (entropy units)

LiF-NaF-KF (46.5-11.5-42 mole %) He 8,000 -0.3

-1.0

-0.1

NaF-ZrF4 (53-47 mole %) He 6,200 -1.0

-0.4

-1.5

-0.1

(45-55 mole %) HF -3,850 -5.2

(53-47 mole %) HF -4,700 -5.4

(60-40 mole %) HF -5,800 -6.2

(65-35 mole %) HF -6,600 -6.4

(80.5-19.5 mole %) HF -9,700 -6.5

He 8,000

Ne 8,900

A 12,400

He 6,200

Ne 7,800

A 8,200

Xe 11,100

HF -3,850

HF -4,700

HF -5,800

HF -6,600

HF -9,700

Table 20. Solubility of HjO in LiCI-KCl Mixtures

Mole % LiCI

Solubility (/^moles H_0/mole solution/mm pressure)

390°C 480°C

50.0 15.0 7.0

53.0 6.2

60.0 18.2 6.y

68.6 7.4
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Kinetic measurements have been used to measure equilibrium constants ' for the acid-base

reactions,

Cr2072- +N03", >N02+(sol) +2Cr042- , (3)

S2072- +N03~ ^^ N02+(sol) +2S042" , (4)

in NaN03-KN03 mixtures (53-47 mole %). (Note that N02+was assumed. The data fit N205
equally well.) The limiting step in the reaction was the removal of N-0. by sweeping out its de

composition products in a stream of gas bubbles. Since the evolution of the gas was dependent on

rates of diffusion into the gas phase and the rate of bubbling, the kinetics of the reaction were not

related to properties of the solution. By an extrapolation procedure the equilibrium constants for

(3) and (4) could be deduced and are given in Table 21 and indicate that S.,0 is a stronger

"acid" than Cr2072-. The values of KA were so small that heavy metal ions had to be added to
the solution to increase the rate of gas evolution by removing CrO . from solution.

Table 21. Equilibrium Constants for Reactions (3) and (4)

r (°C) ka kb

235 8.5 xlO-14 0.026

275 3.8 xlO-12 0.038

In molality units.
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