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GAS TRANSPORT IN MSRE MODERATOR GRAPHITE. 

1. REVIEW OF'THEORY AND COUNTERDIFFUSION EXPERIMENTS 

R. B. Evans III 
\ 

A. P. Malinauskas J. L. Rutherford 

The authors devel 

ABSTRACT 

p equations describing gas transp r t  in p I 

, 

us media. Since the 
report is directed chiefly to  those with little familiarity with gas  transport, many simplify- 
ing assumptions are made in deriving the formulas. Development of the theory proceeds 
logically from gas transport of a pure gas in a single capillary, to  transport of a'binary gas  
mixture in a single capillary, to  gas  flow through a bundle of capillaries, and, finally, to 
gas  flow through a porous medium. Equations are given for each type of transport. Practi- 
cal applications of the theoretical concept9 are a lso shown for a moderator graphite of the 
type used in  the Molten-Salt Reactor Experiment (MSRE). I '  

The experimental findings are limited but significant. Under MSRE conditions it appears 
t quite justifiable t o  ignore normal diffusion effects in gas transport computations. This 

means that all the gaseous diffusion information necessary to correlate fission product 
migration data may be gained through simple permeability measurements; the more complex 
interdiffusion experiments are not required. Thus a complete flow-property survey of a l l  
MSRE moderator materials can be performed with a minimum expenditure of time and effort. 

1. INTRODUCTION 

Much has been written on the subject of gas transport in porous media; hence one is somewhat 
i 

apprehensive in writing another report on the subject, lest he add to the extant confusion rather 
than clarify some of the concepts which have become confused. Nonetheless, we have encountered 

sufficient misinterpretations or misapplications of derived expressions t o  warrant an additional work 

as desirable, particularly for those with little or no familiarity with gas transpott. 
Furthermore, .the complications introduced by the presence of a borous medium have spawned 

numerous models, most of which do little more than add computational complexity or can easily 
mislead the uninitiated into making totally incorrect correlations among geometric parameters. This 

report has therefore been written with two primary purposes in mind: first, we seek to  convey to 

the reader an appreciation of the concepts associated with gas transport in general, and second, we 

attempt to demonstrate how the geometric aspects of the problem which are introduced in dealing 

with porous septa may be handled efficiently. 

',- 
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Since our princiPa1 audience is intended to be those wishing to become familiar with the sub- 
ject, rather than co-workers in the field, we have striven to keep the theoretical treatment as simple 
a s  possible. Thus, for example, only isothermal transport is considered. Similarly, in some in- 

stances mathematical rigor bas been compromised for clarity in presentation, although the rigorously 
derived expressions are likewise given and noted accordingly. Bibliographical references have 
also been omitted; all too frequently these prove to  be bothersome interruptions. For those wishing 

a more detailed treatment, we strongly recommend the treatises listed in the Appendix. 

We shall begin our discussion by introducing the various definitions of velocity and flux which 

will be encountered throughout this work, and then turn our attention to the actual task at hand, 
namely, the presentation of the concepts associated with gas transport. This will be done by con- 

sidering several types of gas transport. The simplest of these, hence the first to be treated, in- 

volves pure,gas flow in a single capillary a s  the result of an applied,pressure drop. Next, trans- 
port in a binary gas mixture will be considered; here pressure- and concentration-induced transport 

will be tre?ted, but we shall still l imi t  the discussion to  only a single capillary. This limitation 
will then be removed by first allowing the gas to be transported through a bundle of identical capil- 
laries, in order to gain s o m e  famil iar i ty  with the geometrical aspects of the problem, and then we 
shall proceed to the case involving a porous medium. 

The theoretical portion will be essentially completed with the latter problem, but to conclude 

here would probably be an injustice to those seeking practical applications of the theory. Accoid- 

ingly, we have included a second section; this part is experimental in scope. In order to demon- 
strate the application of the theoretical concepts and to  present a reasonably detailed description 

of the experimental aspects, the gas transport characteristics of a particular graphite specimen are 
determined by way of example. Although any porous medium would have sufficed, the experimental 

data which are presented have been determined for a graphite of the type employed in the Molten- 

Salt Reactor Experiment (MSRE). The data thus serve an additional purpose; they may be w e d  at  
least as an estimate of the extent of gaseous fission product migration in the MSRE graphite. 

II. NOMENCLATURE 

ai .= Scattering factor for ith gas component. 
A = Superficial area normal to flow in porous media, cm2. 

Bo = Viscous flow parameter for a porous medium, cm2. 
c = Subscript or superscript indicating a capillary or capillary model. 
ci = Mean thermal speed of an ith gas particle, cm/sec .  

ck  = Modified transport coefficient with ro contributions factored out. 

C = Transport coefficient referred to L. 

- 

C, = Modified transport coefficient referred to 1. 

d = Subscript OL superscript indicating dust or dust model. 

di = Inner diameter of diffusion septum, cm. 

I 
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d - Diameter of collision for i-j hard spheres, cm. 
ij - 

'li 

\ 

f = Fraction of diffuse reflections or scattering. 

Yv,) = Velocity distribution function, particles sec3 cm-6. 

F, = Force exerted on a dust particle, dynes. 
6 = Height of a cylinder, cm. 

J = Net flux' of all  particles, particles or moles per c m 2  sec. 

J ,  = F l u  of particles through any one of identical pores, mole per c m 2  sec. 

J ,  = 'Diffusive flux' of ith particles, particles or moles per cm2  sec. 

k = Boltzmann's constant, p/nT, ergs particle-' (OK)-'. 

K = Subscript indicating Knudsen diffusion. 
K = Combined Knudsen-viscous flow permeability coefficient for porous medium, cm2/sec. 

d - A combination of driving forces, cm-'. I -  
d, = Outer diameter of diffusion septum, cm. 

D = Subscript indicating diffusive flow component. 

\ 

dvi = Volume element in velocity space, cm3/sec3. 

Did = Gas-dust diffusion coefficient, cm2/sec. 
D, = Combined Knudsen-normal coefficient for ith-component diffusion, cm2/sec. 
19 
Di, = Knudsen diffusion coefficient, cm2/sec. 

I 

= Normal diffusion coefficient for an i-j binary mixture in free space, cm2/sec. 

( D a  = Knudsen diffusion coefficient for a uniform gas mixture, cm2/sec: 

KO = Knudsen flow coefficient. 
I = True length of a tortuous capillary or connected pore, cm. 
L = Superficial length along flow path in a porous medium, cm. 
m = Subscript denoting a particular pore in a.porous medium, cm. 

, 

mi = Particle mass, dparticle.  

M, = Molecular weight, dmole. 
M j I  = Rate of momentum transfer from ith to jth component, g c m  sec-2. 

M i ,  = Rate of momentum transfer from ith component to wall, g c m  sec-'. 

R = Total particle density of real gases, particles or moles per cm3. 

, 

n, = Density of dust particles, particles or moles per cm3. 

ni = Particle density of ith component, particles or moles per cm3. 
R ' =  Total particle density including R,, particles or moles per cm3. 

N = Number of capillaries. 
p = Total gas pressure, dynes or atm per cm2. 

pa = Atmospheric pressure, dynes or atm per cm2. 
pi = Partial pressure of ith componett, dynes or atm per cm2.  

p'= Fictitious gas pressure xeferred to n' dynes or atm per cm', 

. 

( p )  = Arithmetic mean pressure, dynes or a tm per cm2. 

Ap = Pressure drop across specimen, dynes or atm per cm2. 

e 
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q’= Effective tortuosity factor for porous media. 

7 = Tortuosity factor, for identical capillary bundle = (l /L)2.  

qi = Tortuosity factor referred to a particular transport coefficient. 

Q, = Volumetric flow rate measured at atmospheric pressure, pa,  cm3/sec. 

. 

I - 

r = Radial coordinate, in general, cm. 

ri = Particle radius of ith component, cm. 

ro = Capillary radius, cm. 
(r) = Mean pore radius, cm, L .  

( r2) = Mean-square pore radius, cm. - 

w 

Ar = Distance defining average plane of last collision, cm. 
R = Gas constant, atm c m 3  (OK)-’ mole“. 
T = Absolute temperature, OK. 3 

1 ,  u = Total number-average velocity,’ J/n,  cm/sec.  
ui = Average linear velocity, ’ same as ti, cm/sec: * 
u,, = Slip velocity at  ro, cm/sec. 

vo = Total mass-average velocity, ’ cm/sec. 

Vi = Average linear velocity’ (same a s  ui), J i /n i ,  cm/sec. 
% = Average diffusion velocity’ referred to yo, also called “peculiar velocity,” cm/sec. 

v = Subscript indicating viscous flow component. 

i 

- 

xi = Particle or mole fraction of ith component. 
x i ‘ =  Particle or mole fraction of ith component referred to n’. 

.z = Linear flow coordinate, cm. 

o = Subscript generally indicating capillary or pore radius. 
ai = Any quantity which is a function of vi. 
ai = Average value of any quantity which is a function of vi. 

yi = Normal fraction of tojal admittance for i diffusion. 
r = The parameter causing a flux. 
6, = Knudsen fraction of total admittance for i diffusion. 

- 

. 

d/dr = Operator indicating partial derivative, cm- ’. 
E = Fraction of bulk volume comprised of open pores. Porosity “seen” by equilibrium gas 

(no flow). 

, 

I E ‘ =  Fraction of open porosity engaged in linear steady-state flow. 

d q  = Porosity-tortuosity ratio for a capillary bundle. 
E‘ /q ‘  = Effective porosity-tortuosity ratio, Dii/ f l i i  for porous media. t , 

T ]  = Coefficient of viscosity, poises, dynes c m  sec-2. 

Y = Number of component$ in system. 

‘All particle fluxes and velocities may be broken down into diffusive and viscous components. For ex- 

%& 

\ 
. 

& 

. .  



I- 
i 

*W 
v =  Transcendental number, 3.1416. 
p = Total m a s s  density of La1 gases, g/cm3. 

p’ = Total mass density including dust particles, ,g/cm3. 

aii = Modified diameter for an i-j collision, an. 
2 = Symbol indicating sum. 

“If *l)* = Collision integral for diffusion. 

111. THEORY OF GAS FLOW IN POROUS MEDIA 

Velocity and Flux Definitions 

The molecules which comprise an ordinary gas mixture do not possesg a single, common 
velocity but exhibit a broad range of values. Thus, in describing the motion of a gas in terms of 

the motions of the individual molecules, one utilizes a statistical approach. It is convenient there- 
1 

fore to define a “velocity distribution function” f(v) which represents the number of molecules per 
unit volume whose velocities lie within the range dv about v (where v is a volume vector in velocity 
space). In a gas mixture, one such distribution function f(vi) is defined for each component. If 
ni is the total number of molecules of type i per unit volume, then 

where the integration is carried out over a velocity volume containing all possible values of vi. 

The average value Zii of any quantity which is a function of vi is given by 

4 thus, as anexample, the average velocity of component i in a gas mixture is 

Ti = (l/ni) $vi f(vi) hi 

In a uniform gas mixture at rest, 

(3) 

= 0 (all i) ; 

this should not be confused with the average speed Ei, however, since its value under the same 
conditions is . 

where mi denotes the mass of the i-type molecules, k is Boltzmann’s constant, and T is the absolute 
temperature. The difference between these tw? quantities is that Ei represents the average value 

of vi when only the magnitude, but not the direction, is  considered. 
I i u‘ 

I C  
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, 6 1  

We are concerned in most laboratory experiments with the number of i molecules which traverse 

a given cross section during a specified period of time, and for this purpose we introduce the flux 

J i 9  

I 

. 
i . which is defined as the rate of transport of the :type molecules per unit area. The total flux of 

the gas is obtained simply by adding up the fluxes of the individual components, so for a v-com- 
ponent mixture, 

U U 1 ’  

i - 
(6) I J = 1 J ,  = 1 nivi .  I 

i i= 1 I= 1 
I 

i 
~ ] = n u ,  (7) 1 -  

Alternatively, we could write an expression for J which is similar in appearance to Eq. (S), thus: 3 

& 

in which n = Sini represents the molecular density of the gas as a whole. If we compare Eqs. (6) 
~ 

and’(7), we see that the equations are consistent provided 

thus u turns out to be just the number-average velocity of the gas mixture. Note, however, that a 
gas mixture a t  rest (u = 0) does not necessarily imply that transport within the mixture is absent. 

Similarly, when momentum transport is of interest, it is convenient to employ a “mass-average 

velocity” vo such that one can describe the momentum of the gas per unit volume as i f  all of the 

molecules possess the same velocity. This quantity is defined by the relation - 
c, i= 1 

U 
where p = 2 nimi is the mass density of the gas. Finally, it is often advantageous to employ what * i= 1 i 

is described as the “peculiar velocity” Vi, which is defined by the relation 

- 
vo - vi = vi - 

I 

The peculiar velocity thus represents the average velocity of the i-type molecules measured with 
respect to the mass-average velocity of the gas as a whole. In other words, we allow our co- 
ordinate system itself to move with the velocity vo. From Eqs. (9) and (10) we therefore obtain 
the relation 

- - 
Unfortunately, Vi is also, referred to as the “diffusiop velocity”; as a consequence, niVi is 6-J 
often misinterpreted as the diffusive flux of component i, and Eq. (11) misapplied to yield er- 

/ 

’ .  

\ 

3 . 
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roneous results. Later on in this report we shall have occasion to define a diffusive welocity, 

and we caution the reader that Eq. (10) is not to be equated with this quantity. Accordingly, we 
wil l  differentiate between the velocities by referring to Vi as the peculiar velocity, and will 

introduce another symbol for the diffusion velocity. 
Thus far we have accepted the fact that either the gas as a whole or several of the com- 

- 

ponents which comprise it are in motion, and w e  have formulated various definitiom to aid us 

in describing the motion. In order to introduce additional, equally useful quantities, we now 
consider the mechanisms of gas transport. Under isothermal conditions, these modes of trans- 
port fall into two distinct categories: (1) forced or viscous flows, which result from gradients 
of the total pressure, and (2) diffusive flows, in which gradients of partial pressure provide the 
driving force. We now associate with each of these types of flow a corresponding flux, so that 

J,, is interpreted as the flux of component i due to viscous transport, and J,, represents the 
flux resulting from diffusive transport. Each of these fluxes is associated with a corresponding 

velocity. Thus the viscous velocity of component i may be defined as 

uiv = Jiv/ni , 

and. the diffusive velocity by the expression 
, 

\ uiD = JiD/ni . 
Now consider the flow of a binary gas mixture, of components 1 an1 

(13) 

in a capillary. If the 
flux of component 1 is J1, and that for component 2 is J2, we can immediately write 

11 = J ~ v  + (144  

J, E J2, + 1 2 ,  P (146) 

The total flux J, on the other hand, may be written either in the form , 

J-J, + J D  (154 

or 

J = &  + J ,  ' (156) 

The problem now is to ensure that there is no external coupling between the J,:.and the J i D ;  

in other words, we must define the fluxes (or the velocities) in such a manner that viscous 

- terms do not appear in the expression for J,,,  nor that diffusive t e r m s  appear in the formula for 

J j , .  It turns out that this can be done very easily provided we account for surface effects in 
terms of a diffusive mechanism. To be sure, the equations are still coupled, but this coupling 
is indirect; it occurs through the boundary conditions and the composition dependence of the 

transport coeEicients associated with the two modes of transport. As a result, it is usually 

necessary to solve the viscous flow equation and the diffusive flow equation simultaneously, 

and this can become quite complicated. 

,, 

I 

, 
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The viscous part, when defined as outlined above, is nonseparative; this permits us to ap- 

portion the total viscous flux to the individual components in accordance with their mole frac- 
tions, thus: 

. (16a) 

In t p n s  of velocity, this implies @at the viscous velocity associated with Jv is common to all 
of the components in the mixture. That is, in the case in question, 

5 v  = "2v * 

Unfortunately, a similar apportionment for the diffusive part is not possible. The reason for 
this s t e m s  primarily from the two different viewpoints which are used to  describe the mechanisms; 
in treating viscous transport, we can look upon the gas as a continuum, but in dealing wjth dif- 

+ fusive flow (including surface effects) one must differentiate among the types of encounters 
which the individual gas molecules undergo. ~ ( *  

The solution to a given problem can therefore be reduced to obtaining expressions for the 

relations 

J ,  = J , ,  + xlJv , 

in terms of the driving forces and the characteristics of the gas and porous septum. Although 

the most general case would involve a multicomponent mixture with an unspecified number of 
components, the most complicated case  considered to date has been that for which only two 

components are involved. This presents no difficulty in applying the equations to multicom- 

ponent systems in which all but one of 'the components are present in trace quantities, however, 
because under this condition all  other trace components can be safely ignored when considering ~ 

the transport of any one. 
It is now instructive to take up the problem of the flow of a pure gas through a single straight 

capillary, since this provides the simplest illustration of the concepts and definitions which have 

been presented above. In this ca se  the problem degenerates to writing a solution only for the 

equation 

, 

- 

. 

J = J v + J D  9 

Permeability Concepts 

Viscous Flow in Capillaries. - In this section we consider the isothermal steady-state 

transport of a pure gas'through a long, straight capillary under the influence of a pressure 
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gradient. If we do not allow turbulence and confine the treatment to’the hydrodynamic region, 
then the equation of motion of the gas is given by 

(dp/dz) = (l/rXa/ar) [qr(avo/ar)l , (17) 

in which (dp/dz) represents the  pressure gradient, r is the radial distance parameter, and q 

denotes the viscosity coefficient of ,the gas. Integration of this equation over the l imi t s  r = 0 

and r = r yields, after some manipulation, . 
I 

nr2 dp = (277r dz)[q(dvO/dr)I , (18) 

which is simply the force balance expression for a cylinder of fluid of cross-sectional area m2 
and length dz. The left-hand side denotes the applied force on the fluid, whereas the right-hand 
side represents the shear force (tangential stress). If the fluid is not accelerated, then these 
forces are, of course, equal. 

An expression for the mass-average velocity vo can now be obtained by integrating Eq. (18) 

over the l imits  r = r and r = ro, where ro is the radius of the capillary. Thus 

vo(r) = C(ri - r2)/4ql (- dp/dz) + uo , (19) 

in which uo 

velocity profile is parabolic. 

vo(ro). W e  therefore see that under conditions of laminar flow, the mass-average 

So far we have found it convenient to describe the gas transport in t e rms  of the mass-average 

velocity, but in the laboratory we are concerned instead with the number-average velocity. At 
this point it is therefore advantageous to seek out a relation between these two average quan- 
tities. In the case .of a pure gas no difficulty is encountered; as can be readily seen from Eqs. 

(8) and (9), the two velocities turn out to be identical, and we can immediatbly write 

u(r) = yo(‘) = [(ri - r2)/4 $ (- dp/dz) + uo . (20) 

All that remains to be done now is to average u(r) over the  (assumed uniform) cross section of 
the Capillary. The’ result is given by 

u = (ri/8q)(- dp/dz) + uo .- (21) 

The flux of molecules which pass  through any given cross section of the tube is then ob- 

tained from the relation 

J = n u .  

Thus, by substituting for n the well-known formula 

n = p/kT , 

we derive an expression which relates the measured flux to the viscosity of the gas, the geom- 

etry of the capillary, and the pressure gradient which causes the gas to  flow; this is given by 

J = (ri/8qXp/kTX- dp/dz) + nuO . (22) 
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LJ 
Nothing has been said about t he  extra term, nuO, which appears in Eq. (22). We shall main- 

tain this silence for a little while longer, except to point out that it appears as the result of a 

boundary condition. 

If we retrace the derivation'of vo, this time for a gas mixture, we again find that the mass-  
average velocity averaged over the cross  section of the capillary is given by 

v0 = (ri/8pX- dp/dz) + uo , 

where p now refers to the viscosity of the mixture. One can therefore always write 

uV E yo - u0 = (r;/8qX-dp/d~) , (23) 

! or . .  

I 

I 

I This is the definition of the viscous flux which we had mentioned earlier. h order to obtain an- * 
, 

expression for the diffusive flux, we manipulate Eq. (8) into the form 
~ 

u = (Vn) niCi + uot - vo) + uv ; 

thus the individual diffusive fluxes, JiD, are given by 
- . .  

JjD = npjD = nj(Tj + uo - vo) = ni(Vj + uo) . (25) 

- 
The corresponding diffusive velocities therefore represent the average velocities of the molecules 

measured with respect to a hypothetical mass-average velocity which is derived from the equation 
of motion under the assumption vo(ro) = 0 [see Eq. (19)I. 

I 
1 

By means of these definitions we have solved the viscous or forced-flow part for all of the 
cases in which it arises; the answer is 

1 

I Jv = (ri/8pXp/kTX- dp/dz) ; (26) 
I 

we shall now turn our attention to'the diffusive part of the problem. 
Slip Flow in Capillaries. - Equation (26) turns out to be a rather good approximation at high 

I _  pressurds for flow through large tubes, but at  low pressures and for smalldiameter tubes, the 

"slip flow" contribution, nuo, cm, become quite significant. W e  must therefore express nuO in 
terms of those quantities which are amenable to measurement in the laboratory. To do this, we 

shall take advantage of the separability of the viscous and diffusive parts of the problem. Con- 
ceptually, then, in the case of a pure gas, we are considering the transport of R molecules per 
unit volume which have a drift velocity uo and are under the influence of a pressure gradient. 

Now consider a volume element. -mi dz within the capillary. The molecules will receive a net 
forward momentum per unittime equal to -.rrri(dp/dz) dz. If the gas is not to be accelerated, 
this momentum per unit t i m e  must be lost to  the capillary walls. 

f 

<"* 

m 

J 



11 

Of the mr; dz molecules, let the fraction (1 - f )  collide with the wall in a specular maher; 
in this type of collision the angle of incidence equals the angle of rebound, and there is no 

change in the z component of the velocity (in this case uo, on the average). For these colli- 
sions there is no net transport of momentum; thus they can be ignored in the rate-of-momentum- 
transfer balance. On the other hand, let the remaining fraction f be collisions in which the mole- 
cules rebound from the wall in a completely random manner (diffuse scattering). For these 

collisions, on the average, the z component of the momentum which is transferred in the direc- 
tion from the wall to the gas is zero, so that the net rate at  which the momentum is lost to the 
wall is Smply the rate at  which it is transferred in the direction from the gas to the wall. The 
rate a t  which the molecules strike the surface is (1/4)nF(2nr0 dz), and of these collisions, per 

unit time, (f/4)nF(2mr0 dz) actually transfer momentum to  the wall. In each case, on the average, 
the momentum muo is transferred, so the momentum balance is given by 

thus 
nuO = (ro/mE)(2/f)(- dp/dz) . (27) 

Although the derivation just presented is by no means rigorous, it is correct in spirit and 
is consistent conceptually with a similar type of derivation which will be given later in connec- 

tion with binary gaseous diffusion. Another derivation, which likewise is lacking in mathematical 
rigor, yields (2 - f)/f in place of the factor 2/f. Since f appears to  be very nearly equal to 
unity, the two expressions differ by abbut a factor of 2. Equation (27) does in fact overestimate 
the effect of slip flow; primarily because of simplifications in the derivation, so we shall-adopt 

the commonly quoted result, 

.- 

The diffusive flux J D  is therefore given by i 

J ,  = nuO = (ro/mE) [(2 - f)/fl (- dp/dz) , 

J = JV + J ,  = l(r;/8qXp/kT) + (m/8)(r02/kT)[(2 - f)/fll (-dp/dz) . 

(29) 

and the total flux is obtained by adding Eqs. (26) and (29) to yield 

(30) 

This expression is usually presented in the form 
, 

where the “viscous-flow coefficient” bo and the “Knudsen-flow coefficient” KO are defined by 

Bo = ri/8 , (324  

KO E (3r/16XrO/2)[(2 - f)/fl . (326) 

, 
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I ’  

Since the slip term was regarded a s  a diffusive flux, we could have immediately written 

1, = -D,(dddz) , (33) 

and then attempted to expfess the “Knudsen diffusion coefficient,” D,, in terms of the charac- 
teristics of the capillary and the gas. By comparing the slip term in Eq. (31) with Eq. (33), we 

see that the result should be auivalent to . 
I ,  

and we shall accept this result without further justification. 

This completes the discussion of pure gas transport; we now turn our attention to the trans- 
port characteristics of binary gas mixtures. Since the viscous part of the problem lias already 

been worked out, we need only consider the diffusive aspects. We shall therefore begin by 
ignoring viscous 5ow completely. 

Binary Gas Mixture Transport . 

i. 

Counterdiffusion in  Capi Ilcries. - A typical experimental setup for investigating diffusion 
processes in capillaries or porous media is sketched in Fig. 1. The septum (either a single 
capillary, an array of parallel capillaries, or a porous medium) i s  sealed into a container so that 
its ends may be swept with two initially pure component gases. The extent of the counterdiffu- 

sion through the barriei is then determined from measurements of the degree of contamination of 

the two sweep streams. 

To simplify the sign convention, we shall choose the positive z direction a s  the direction of 
transport of the lighter component; this component will always be designated as component 1. 
W e  now seek to describe the transport, in particular the diffusive transport, in terms of the 

characteristics of the two components and the geometry of the septum (in this case a single 
capillary). To accomplish this end, we again consider the rate of transport of momentum under 
steady-state conditions. 

Within the volume element dz in the capillary, the molecules of component 1 will receive 
a net forward momentum per unit-time which is equal to -.rrri(dpl/dz) dz. This is the s a m e  ex- 

pression written down earlier, except that we now employ a gradient bf partial pressure. How- 
ever, it is now possible for the component 1 molecules to lose this momentum in two ways: (1) 
to the capillary walls, as-in the previous case, and (2) to component 2 molecules. 

- - 
Note that there can be no transfer of momentum due to collisions among molecules of the 

same component. This is readily demonstrated by considering a head-on collision (partly for 

simplicity) between two molecules which are identical in every respect except velocity. Let 

molecule A, with velocity vA, collide headan with molecule B, whose velocity is vB. As a 

result of the corservation of momentum, the velocity of molecule A will be vB after the colli- 
sion, whereas that of molecule B will be vA. But since the molecules are identical, we can LilJ 

‘ interchange even our designations A and B after the collision. In other words, to an observer 
5 

\ 
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MANOMETER AND 
PRESSURE GAGES 

I 

I 
__I 

THROTTLE 
VALVE 

THROTTLE 
VALVE 

Fig. 1. Diagram of a Typical Counterdiffusion Ex- 
periment. 

o is watching the event it would appear that the two molecules never really did collide but 
passed through one another instead! 

If we denote by M,, the rate of transfer of momentum from the component 1 molecules to the 
wall and by M,, the rate of transfer to component 2 molecules, the momentum balance equation 

for the component 1 molecules becomes 
I 

M,, + M,, = -Tr:(dp,/dz) dz i , ' (35) 

and a similar equation can likewise be written for component 2. 
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As a result of the derivation of MI; which was presented in connection with the diffusive 
transport of a pure gas, we can immediately write 

/' 

where ulD represents the average diffusive velocity of the component 1 molecules, and the 
factor (f/4) has been adjusted to comply with Eq. (29). This result, it is recalled, was obtained 

by considering the average number of collisions which the moleples  make with the walls in 

unit time, and then mupliplying by t h e  average momentum which is transferred in a single colli- 
sion. W e  shall employ the same procedure to evaluate M, ,, but once more emphasize that al- 
though the method is correct in principle, it is lacking in mathematical rigor. Note also that 
we are only employing the diffusive veloc-ities, uiD. In other words, our reference frame is mov- 
ing along the tube with the viscous velocity uv.' Subsequent addition of the diffusive and viscous 

velocities, or more properly the diffusive and viscous fluxes, in effect fixes the reference frame 

to correspond to the laboratory cqordinate system. 
' The average number of collisions which occur between unlike molecules in the volume ele- 
ment IT*: dz in unit t ime  is given by n1n27Td:,(E: + z)ll2 (mi dz), where vd:, represents the 
cross section of the sphere of influence for unlike-molecule collisions. In each of these col- 

lisions, the average amount of momentum which is transferred in the z direction from molecule 

1 to  molecule 2 is [mlm,/(ml + m2)](ulD 
molecules per unit t ime  a s  a result of collision with component 2 molecules is given by 

u ~ ~ ) ,  so the momentum lost by the component 1 

MI,,= n 1 n 2 r d ~ , ( E ~  +Z~)1'2[mlm,/(ml + m2)l(ulD - u2D)(m: dz) . 
If we insert this expression, along with Eq. (36), into Eq. (35) and simplify, we obtain 

Of '\ 

(37) 

The first term in braces is just the Knudsen diffusion coefficient for component 1, DIK, whereas 

the second term in bracesjs  the binary diffusion coefficient @ 12 of the system 1-2. (Note - that 

8 12 = 19,'; this can be shown by interchanging subscripts in the flux equations.) Equation (38) 
can therefore be written in the form 

I 

cd 
5 

?! 
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f 

J I D  X2J1D - x1J2D - dn1 - +  
DlIC 1912 dz 

Had we accounted for the transport of momentum via'intermolecular collision in a mathe- 
matically rigorous manner, the actual expression for the binary diffusion coefficient would be 
given by 

I 

(39) 

in which ~ D : ~ Q : > ~ ) *  represents the collision cross section for diffusion. Unlike the simple 

expression r d i 2 ,  this quantity is temperature-dependent and is evaluated from a detailed con- 

sideration of the dynamics of the collision process. The simple derivation once again gives 
an overestimate of the momentum transported, being approximately four-thirds t i m e s  the rigorously 
derived result. 

In order to account for viscous effects, we need only insert the expressions 

J ,  = JID + xlJ, , ;i 

into Eq. (39), remembering that J ,  is given by Eq. (26). The final result is conveniently ex- 

pressed by the relation 

\ J ,  = - D l  (2) + xlSl J - xlyl* qkT (%) dz , , 

where 

Equation (41) is symmetric with respect to an interchange of species subscripts; hence the cor- 

responding equation for J ,  is I 

bi 

f 
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A third equation is obtained by adding Eq. (39) and the corresponding expression for com- 

ponent 2, 

/ The result can likewise be cast into a form which involves the total fluxes J ,  and J ,  (i.e., the 

fluxes actually measured in the laboratory). , Thus 

L + L - [ l +  D I K  D2K (z+&J!!4 (;). (44) 

Although we have written three equations to describe binary gas  transport through capillaries, 

namely, Eqs. (41), (43), and (44), only two of hese are independent; any one can be  derived by 

suitably combining the other two. The limiting forms of these relations in the free-molecule 
region (p + 0) and the hydrodynamic re&on (p -B 00) can be readily obtained by inserting the 

values presented in Table 1 for the various diffusion parameters. . 

Table 1. High and Low Pressure Limits of 
0 Iff us ion Pararne ter s ' 

Limitas n a,, D, 6, y1 "Y1 

0 1  0 P+ 0 DIK 

p-Bm 00 '12 "'12/DlK 

'Note that n8,, and D,, are pressure-independent 
quantities. 

A very important result is obtained from Eq. (44) for diffusion under conditions of uniform 

presstm. For this case the right-hand side of the equation vanishes, and one therefore obtains 

Since the quantity (2 - f)/f is reasonably independent of the gas, the ratio of the Knudsen dif- 

fusion coefficients can easily be reduced to yield 

This result is expected f& transport under free-ma.xule conditions and is generally cc pted 

t 

t 

as Graham's law of effusion. Equation (45) has been derived under no special conditions rela- 
tive to the pressure of the system; it is therefore applicable at all pressures, not only in the W 

' free-molecule region. Although this relation was also stated quite explicitly by Graham, in fact 
. 

5 
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several years prior to  his effusion studies, it apparently was either forgotten or misinterpreted. 
Nonetheless, this  is Graham's law of diffusion, and has been experimentally verified by many 
investigators. Note also that it is impossible to obtain zero net flow (J = 0) under uniform 
pressure conditions unless D1, = DzK. 

section we extend this treatment first to a bundle of parallel capillaries and then to porous media. 

Pore Geometry and Overall Coefficients. - Consider a cylindrical solid with a bulk volume 

Thus far we have restricted the treatment to  transport through a single capillary; in the next 

given by nr2L which contains N identical capillaries, each of volume nri l .  If the axes of the 

individual capillaries do not coincide with the axis of the cylinder, then the length 1 will be 
greater than L; therefore let ?'I2 I Z/L. The porosity or relative void volume E of the cylinder 

is given by 
. 

If we insert the definition of the tortuosity ;I into the above expression and rearrange, we find 
that the number of identical capillaries in the cylinder can be described by the relation 

N = Z ( $ ) .  - 1 / 2  Q 

The total flow of molecules measured relative to the geometry of the solid is J(nr2); this 

must be numerically equivalent to NJ,(nri) ,  where J ,  denotes the flux of molecules through 

any one of the N identical pores. Hence 

J N(.rrrf> E 

7T*2 -1 /2  
JO 9 
-I.-=-, 

However, the flux J is expressed as the product of two quantities, the gradient of some parameter 
which is causing the flux and a proportionality constant. In general, then, 

and 

J 0 = - C o  ($) . 
. 

By suitably rearranging these two expressions and by inserting for J / J o  the relationship given 
previously, we see that the  ratio of the  coefficients is given by 

C E  --=-. - 
co Q 



18 

Two of the coefficients of interest incorporate'r, to some power; thus it is advantageous to 
account for this fact by writing C, = codm2, so that Eq. (46) may be rewritten in the form 

C/C, = ( € / T ) t i e 2  (j,= 2,3,4) . (47) 

In the case of normal diffusion, c, = ai, and (j - 2) = 0, but for Knudsen diffusion, 

and the exponent (j - 2) is unity, whereas for viscous transport, c, = p/8q and (j - 2) = 2. 

we can consider many other geometrical models which are more complex but still tractable math- 
ematically, their exposition will provide little insight concerning the geometrical characteristics 

of a typical porous medium. In the language of the pore or capillary concept, such septa must 
be regarded a s  consisting of a myriad of nonuniform interconnected capillaries of widely varying 

lengths. One is therefore faced not only with averaging the pore radius tm over the number of 
capillaries (from m = 0 to m = N), but also over the individual lengths 2; of the capillaries. 
Moreover, all of the void volume E need not contribute to flow (blind pores, for example), and we 
shall denote this fact by using the symbol E' to signify that part of E which is actually involved 
in gas transport. - 

It is therefore quite obvious that the specification of the geometry of a porous medium re- 
quires such fine detail that a complete solution of the problem will almost certainly never be 
obtained. Nonetheless, we can set up the gas transport equations in a formal manner and thereby 
reduce the problem to obtaining only a few parameters' experimentally. 

- 
The situation involving a bundle of uniform identical capillaries is highly idealized; although 

, 

, 

We start by defining the effective porosity E' in the following way: 

Now, however, the equivalent expressions for the flux yield 

or, in terms of the transport coefficients, 
i 

c(d)  (-a?/&) = TC, &,&-dr/dZm) 0' = 2,3,4) . 
This immediately gives 

- 1 / 2  

# (49) - =  c C m r A l q m  
cO t2 . 

\ 

where t again represents the radius of the medium which contains the capillaries. If we insert 
Eq. (48) into the above expression, we obtain 

t 
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' Finally, we can obtain a form similar to Eq. (47) provided we define the tortuosity i$ and the 

average value of rj-' by 

thus 

We should like to impress upon the reader that cj, unlike E ' ,  is a function of the parameter 
j ,  and we have added the subscript to indicate this fact. Furthermore, except for the case j = 2, 

( and 5 are defined a s  a group; for the one exception we have 

2 - I / ,  - e m  rmQm 
9, = c,(@i;/'> * 

The permeability equation, that is, the gas  transport equation for a single gas under the 
influence of a pressure gradient, is commonlywritten in the form 

I 
/ 

in which the flux J and the pressure gradient are measured relative to the geometry of the porous 

medium. Equation (51) is identical to Eq. (31), the expression for a single capillary, only in 
appearance, for Bo and KO have been redefined;. / 

whe& E' and the grouping ( k2) /cj are given by Eqs. (48) and (49). Note also that the 
averages ( rj-2) actually represent a second averaging process. In other words, we have ' 

tacitly assumed that such factors as cross-linking, nonuniformity down the length of a given pore, 

and shape have already been taken into account. 

Fortunately for everyone's sanity, permeability measurements are not too difficult to perform, 
so we let nature do the averaging processes for us. Except for the factor f i n  K O ,  which is 

independent of the gas to a good approximation anyway, both Bo,and KO depend only upon the 

geometry of the medium. Under steady-state conditions, then, we can integrate Eq. (52) to yield 

. 



5 

20 

where Ap E p(0) - p(L), ( p )  = ?2 [p(O) + p(L)I, in which p(0) and p(L) are the pressures at the 
two faces of the porous medium, and JkT is the flow, in pressure-volume units per unit time, per 
unit cross section of the medium. Hence Bo and KO can be obtained from the slope and inter- 
cept, respectively, of a plot of the\left-hand side of Eq. (54) vs  ( p) . Once determined, these 
parameters are invariant to the choice of gas and appear to remain reasonably constant with 
respect to temperature and time. 

It can likewise be shown that, for transport in porous media, the diffusion equations given 

earlier for diffusion in capillaries remain unchanged in form provided we replace the  diffusion 

coefficient 8 , ,  by an effective diffusion coefficient, DI2,  where 
i 

D , ,  = (E’/Q’PJI2 J (55) 

(554 

The quantity (€’/e’) is likewise dependent only upon the geometry of the septum and is most 
conveniently determined through counterdiffusion experiments which are performed at uniform 
pressure, 

In concluding this section, we should like a t  least  to partially dispel the impression which 
the reader may have received from our discussion with regard to the utility of porosity and pore- 
size distribution data. It is quite true that i f  one is interested in small differences in the trans- 
port characteristics of two septa, for example, any inferences which are drawn from the pore-size 

distributions of the two samples and later verified by experiment are unquestionably fortuitous. 
As a rule of thumb, however, one can state that the permeability generally increases with in- 

creasing porosity and that of two specimens having approximately the same porosity, the one 
with the larger pores will give the higher permeability values. Moreover, one can make inferences 
from pore-size distribution data if large differences are involved, but even these should be 

verified by experiment. 

Gas Transport in a Static Dust  Environment. - In our derivations of the diffusive part of the 
gas transport problem, we nonchalantly made a number of assumptions in order to  keep the presen- 
tation and the mathematics as simple as possible. For example, we assumed that the average 
rate of momentum transfer was equal to the average number of collisions t i m e s  the  average 
momentum transferred per collision. The average of a ptoduct, in general, only approximates the 

product of the averages. In fact, such approximations led to overestimates of the rate of mo- 

mentum transfer in the simplified treatments, but it was a relatively simple matter to “properly” 
adjust the coZi-ient- because we knew what the answer was beforehand. The correct expres- 

J 

w sions were no, .,om..: 

theoretical investigation of gas ’ ransport in a static dust environment, so perhaps we should at 
+I an application of the capillary flow concept, but rather from a 

least outline how the rigorous derivations were obtained. 

\ 
c 
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The physical description is as follows: Suppose we have an agglomerate of giant gas mole- 
cules (dust) which are uniformly distqbuted and fixed in space. For simplicity, let all of these 
molecules be of exactly the same size. If two gases are allowed to interdiffuse through the ag- 
glomerate, the process can be described a s  diffusion of a ternary gas mixture, that is, a mixture 
of gases 1 and 2 and the dust d. 

The diffusive flux relationships for such systems under isothermal conditions are obtained 
from the Stefan-Maxwell diffusion equations: 

V 

[n’D,;]-’ (njJiD - niJjD) = n’dj , 
i#j 

where dj reptesents a combination of driving forces. The primed quantities indicate that the 
dust is to be included in the counting process; thus n’ = n1 + n2 + nd = n + nd, where the un- 

primed quantities refer only to the gas. This poses no problems, since n’D6 = nDij and dn’/dz = 

dn/dz, the latter by virtue of the postulated uniform density of the dust (ahd/dz = 0). 

For the ternary mixture considered here, we have three equations of the form given above - 
one each for j = 1, 2, and d - but only two of these are independent. Also note that although the 
gases are not acted upon by an external force, there is an external force F, which acts upon the 
dust, namely, that clamping force which keeps the dust particles stationary. The clamping force 

is 

where p refers to the true gas pressure. For j = 1, the Stefan-Maxwell equftion becomes 

nlml d In p’ n’nlml 

P I P ’  
x1J2D - X2JlD “dJ1D - + n’ -- - +-n F d d ’  ’ n‘dx’ dz ( p t )  dz 

Dl 2 nDld 

If we insert the expression above for F, into the equation, the relationship s impl i f i e s  to yield 

ndJID x2J1D - ‘lJ2D -- dnl 

nDld Dl  2 

-+ 
dz ’ 

which is identical to Eq: (39) with 

The gasdust  diffusion coefficient D,, is given by 

where rd denotes the radius of the dust particles and ai represents ascattering factor which is 
related to f. 
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6 

The viscous flux, on the other hand, is obtained from Stokes’ law. The force F, on the 
! . particles due to viscous drag is given by 
1 

1 

I I 
Fd = -67~~77 (4). 

I 

If we equate the right side of this  equation to the right side of the clamping force expression 
and rearrange, w e  obtain , 

We have made no assumptions which would prevent us from orienting the dust in such a 
manner a s  to form a capillary. However, this model is couched in a language which fortunately 
excludes a direct connection between rd, the radius of the dust, and To,  the radius of the capil- 
lary. Only the simplest sort of “geometrical factor” is required, n d e l y ,  E ’ / q ‘ ,  as in Eq. (55), 
and this will apply in the same.form to all parameters. The’impbrtant point is that the model 
separates the geometriqal aspects of the. problem from the characteristics of +e gas, and more- 
over does so in a mathematically rigorous manner. I ’  

I 
I 
I 
~ 

~ 

The extension to  a porous medium is performed in much the same way a s  that done pre- 

viously, except that one now takes some suitably averaged value of the dust radii. The trans- 

port coefficient expressions for gas flow in porous media which are obtained from the capillary 
model and the dusty-gas model are presented for comparison in Table 2. 

I 

Table 2. Mathematical Expressions of the Gas Transport Coefficients for Flow in Porous Media 

Model’ 
Transport Coefficient 

Capillary Dusty Gas 

I 2 
1 

D12. cm /sec 
(normal diffusion) 

, ,  

(8 +a) 
I 
~ I i KO. (Knudsen cm diffusion) ($)(.>[nd(ri) T] 
i 

2 Bo, cm 
(viscous flow) 

‘The expression fa a,, in terms of molecular properties is given by Eq. (40). The quantities z, and 

%ote that we have retained the capillary concept in defining ( E ’ / q ’ )  for the dusty-gas model. 
q’are defined by Eqs. (SO) and (55a) respectively. 

I 

I , 

I 

t 

J 

c .  

t 
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' Summary 

In the preced!ing sections of this report we have attempted to present, in a s  simple a manner 
a s  possible, the various flow equations which are encountered in dealing with isothermal trans- 

port in porous media. We can best summarize this portion by pointing out that any isothermal 
gas transport problem involving a porous septum is completely specified by Eqs. (41) and (44), 
provided the coefficients D i K ,  D12, and Bo are modified to take into account the nuances of 
pore geometry. 

to be had; recourse must therefore be made to experiment. However, the only measurements 

required are a few permeability determinations with a single gas and a few counterdiffusion ex- 

periments with a single gas pair. This is relatively easy to accomplish. Once this is done, 

the septum is completely characterized; that is, the transport behavior of any gas under a given 
set of conditions may be predicted with confidence. 

Unfortunately, an a priori method for evaluating the suitably modified coefficients is unlikely 

In the experimental portion of this work we shall demonstrate: (1) how the geometry of the 
septum is characterized through permeability and counterdiffusion experiments, and (2) how the 

results may be applied to gases and conditions other than those employed in the experiments. 

Appropriately, we have chosen t o  use a graphite specimen of the MSRE type. 

IV. EXPERIMENTAL 

Description of MSRE Graphite and the Experimental Specimen 

Little will be gained at  this time i f  we  consider details of the manufacture of the MSRE 
graphite. To be sure, the fabrication procedu'res significantly affect the transport characteristics 

of the finished material and become quite important if property variations within the specimen 

or an intercomparison of various types of graphite are of interest. However, in the present 
case we concern ourselves only with a single type of graphite and moreover concentrate on the 

transport characteristics of the material a s  a whole. A detailed consideration of its manufacture 
thus becomes academic, so only those aspects which are pertinent to this limited objective are 

presented. 
\ 

- In the original design concepts of the molten-salt reactor, intrusion of the salt  into the 
- graphite was regarded a s  an intolerable contingency. As a result, a material of low permeability 

was demanded. Such low-permeability graphite is usually obtained by applying additional, 
special treatments, beginning with a modified porous nuclear-grade graphite. These treatments 

involve injecting a suitable impregnant into the base stock which, upon undergoing heat treat- 

ment, deposits a char within the pores of the graphite. 
As is illustrated by the photomicrograph comparison of NC-CGB-BS (base- stock) and NC- 

CGB (impregnated stock) in Fig. 2, impregnation treatments considerably lessen the pore space 
within the graphite. This difference in pore size likewise accounts for the observed difference 
in the penetrability of the two graphites by molten salt, which is also shown in Fig. 2. 

I 

4 
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BASE STOCK 
(NC-CGB-BS) 

AFTER TREATMENT 
(NC-CGB) 

Fig. 2. Photographs Showing the Effec? of Multiple 

Impregnation Treatments on the Microstructure and 

Molten-Soh Penetration of NC-CGB Graphite. 

areas in the upper photomicrographs indicate void 

spaces (pores). Light areas in the lower radiographs 

indicate the presence of a **nonwetting** salt (BULT, 
14-060) which invaded the samples during o 100-hr 

exposure to molten salt a t  704'C and 11 atm pressure. 

Light 

r 

II 

One might logically expect that, as a result of impregnation treatments, the end product 
would exhibit property variations along directions normal to the impregnation surfaces, particular15 

near the surfaces of the graphite, where impregnation should be especially effective. Insofar as 
MSRE graphite is concerned, the nonhomogeneity is probably mitigated somewhat by subsequent 

machining operations which are required to produce the final dimensions of the material, and we 

shall explore this facet in a later report. For the present, however, we choose to concentrate 
L 

on the material a s  a whole. 

, The MSRE utilizes the graphite in the form of 6-ft-long bars which have a cross section of 

LJ 3.08 in.2. All four sides of each bar are slotted along the entire 6-ft length; these slots provide 

the flow channels for the molten salt. The flow specimen was machined from one of these bars. 



I 
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Our choice of sample geometry and location in the MSRE graphite bar was governed by the 
following objective, namely, to obtain information regarding the relative contributions of Knudsen 
and hydrodynamic transport to the overall flow pattern. This requires both permeability and 
counterdiffusion experiments, and these, in turn, require samples which have a large surface- 
area-to-thickness ratio, as well as a reasonable degree of uniformity. Since the bar was expected 

to exhibit considerable nonuniformity and a high Knudsen contribution in the regions near its 

surfaces, we decided to obtain the flow specimen from its center. This position is defined in 

Fig. 3; in this location uniformity, normal diffusion effects, and porosity may be considered 

maximal. 

The 

ORNL-DWG 66-12740 

DIMENSIONS ARE IN INCHES 

PERMEABILITY-DIFFUSION 
SEPTUM DIMENSIONS ( 6  in. LONG) 

I 
I 

\ I 

'-[' r- 4.490 -------I 
I + 0.800 --q 

SALT FLOW 
CHANNELS 

Fig. 3. Position and Dimensions of the Diffusion Septum and Porosity Sample. ' 

specimen, hereafter designated as the diffusion septum, was in the form of a thin-walled 
cylinder whose axis coincided with the extrusion axis of the bar, For 'this geometry, the area- 
to-length ratio A/L is obtained from the radial steady-state flow relationship for a uniform 

material, 
I 
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’where h denotes the height of the cylinder (not to be confused with the length of the flow path 
L) A d  do and dj represent the outer and i n k  diameters respectively. The septum is thus’ 

characterized by the following geometrical parameters: 

h =6 in., 
do = 0.800 in., 

di = 0.600 in., 
A/L = 203.6 cm, 

A = 77.57 cm2. 

Gas Transport Characterization of the Diffusion Septum 

Apparatus and Procedure. - Mutual diffusion coefficient determinations involving binary gas 
1 mixtures are generally made under transient conditions in an apparatus whose geometry is well 

defined and known. Moreover, the system is closed throughout the course of the experiment, 
thereby forcing the diffusion rates of the two components to be equal. In the present work, 

however, we employed a steady-state method, and this required that the system be open. 
The approach used by us was originally developed by Wicke for his investigations of ad- 

sorbed CO, surface diffusion in porous media; a C0,-N, mixture was swept across one face of 

a porous septum, whereas the opppsite face was swept with a stream of pure N, in such a manner 

that no pressure gradient was imposed across the septum. Although the CO, diffusion rate was 

determined in his studies, Wicke unfortunately ignored the N, diffusion rate. Somewhat later, 

Hoogschagen adopted the Wicke procedure and added one important modification; he monitored 
the degree of contamination of both sweep streams. This led to the rediscovery of Graham’s 
law of diffusion. (Ironically, Hoogschagen’s rediscovery of Graham’s law and Soret’s earlier 
use of this law to verify the formula 0, for ozone were also confused by workers in the field!) 

Figure 4 is a photograph of the diffusion cell assembly which was used in this work; the 
components, from left to right in the figure, are: Ar sweep-gas outlet tube and thermocouple; 
septum container; diffusion septum, container cap, and fittings; and the He sweep-gas flow guide 
ahd septum end cap. The end caps were.attached to the graphite cylinder with epoxy resin to ef- 

fect a gas-tight seal and to define the surface of the septum available to gaseous diffusion. 
The counterdiffusion experiments were performed by sweeping the inner surface of the diffusion 

septum with He and the outer surface with Ar and analyzing the effluent streams for the corre- 
sponding contaminant. Pure helium was introduced into the upper T-joint which is shown in Fig. 
4 and made to flow down the annulus formed by the t /4- and %-in. tubing. The gas then entered 
the inner section of the septum in the region of the upper end cap and was withdrawn at the 

base of the flow guide through the i-is. tubing. In a similar manner, pure argon was admitted 

to the outer surface of the specimen through the T-joint adjacent to the container cap and with- 
drawn at the base of the container through the %-in. outlet tube. 

A drawing of the entire flow system is shown in Fig. 5. Uniform pressure conditions were 

obtained by adjusting the control valves R, , R,, R,, and R, until the pressure drop Ap across 

I 

. 
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PHOTO 36002 

Fig. 4. Diffusion Cell Assembly for NC-CGB Diffusion Septum. 
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GAS SUPPLY 4 

ATM 4 

ORNL-DWG 64-2439 

GAS SUPPLY 2 

~ MANOMETER 

L A T M  

ATM ATM 

Fig. 5. Line Drawing of the Diffusion and Perrne- 
ability Measurement Apparatus. 

the sample (as detenhined with a mercury differential manometer) was zero. After sweeping its 
respective side of the porous medium, each effluent stream was passed through one of a pair of 

thermostated thermal conductivity cells (T) forgas composition andysis.  Continuous compari- 
son with streams of the corresponding pure gases  under identical flow conditions was accom- 

plished by adjusting the control valves R ,  and R ,  until the rotameter pairs (F) indicated equal 
flow rates. Back-diffusion of air into these reference streams was minimized by venting the 

gases through 12 ft of coiled i-in. copper tubing, whereas the sweep streams were passed 
.hrough dibutyl phthalate bubblers (B) before being admitted into the calibrated wet-test meters 
(S). In &bout half the experiments the gas composition analyses were obtained with a mass 

spectrometer. For these mns the samples were withdrawn from sampling ports located at T. 
Previously calibrated Bourdon gages (G) provided measurements of the pressures a t  which the 

experiments were performed. 

The permeat X ty  data were likewise obtained with this apparatus. This was accomplished 

by closing one of the inlet valves and the outlet valve of the opposite flow stream (e.g., R ,  and 

t 
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All of the gases employed in this work were found to be at least 99.9% pure. Analyses of 
, 

the helium and argon supplies indicated a free oxygen content in the range between 1 and 4 ppm 
and water contents from 10 t o  15 ppm. Thus, no further attempts a t  purification were undertaken. 

Permeability Results. - Since the techniques usually employed to obtain permeability data 
appear in abundance in the open literature, a detailed discussion on our part is unwarranted. 
W e  therefore merely outline the calculational procedure in this section. 

The integrated steady-state equation that applies to the diffusion septum permeability meas- 

urements is given by 

paQa = Ki(A/L) AP 
~ where the permeability coefficient of component i is 

In our experiments, the effluent volumetric flow rate Q, is determined at  the barometric 

pressure pa by means of the calibrated wet-test meters; the pressure drop Ap.= p(0) - p(L) 
across the septum is measured with the mercury differential pressure manometer which is shown 

in Fig. 5; and, finally, the arithmetic mean pressure ( p )  = ' / [ p ( O )  + p(L)] is determined from 
readings of the barometric pressure and the calibrated Bourdon gages. 

I 

Diffusion septum permeability coefficients were determined at 22.5OC for three gases: hydro- 
gen, helium, and argon. The resultant experimental data are presented in Table 3 and are 
graphically displayed in Fig. 6 as a function of the mean pressure ( p )  . In accord with the 

linear relation, Eq. (56), these data have been smoothed using. a linear leastsquares procedure; 
the solid lines which appear in Fig. 6 thus represent the smoothed data and form the basis for 

the determination of the permeability parameters which are tabulated in Table 4. 

Although the quantity \/ic7; D i ,  and the viscous-flow coefficient Bo should depend only upon 

the graphite structure and therefore be independent of the gas, some variation in these values 
has been noted. These discrepancies are probably indicative of the experimental errors in- 

volved; hence an average of the values for @ D,,  and Bo which were obtained from the helium 
and the, argon data has been taken to be representative of these quantities when we consider the 

He-Ar counterdiffusion data. 
Helium-Argon Counterdi ffusion Rcsu Its. - All of the counterdiffusion experiments were con- 

ducted under conditions of uniform pressure; hence the data were correlated in accordance with 
the constant-pressure form of Eq. (41), 

For this case D,, and aHe are constant over the length z = 0 (0-2 = L, and Eq. (57) can be 

integrated and rearranged to yield an expression for the effective diffusion coefficient D H e A r  in 

m 

I 
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Table 3. Experimental Values of the Permeobility Coefficient of the NC-CGB Graphite Diffusion 
Septum at 225OC as Determined with Hydrogen, Helium, and Argon 

Hydrogen 

(atm) (cm2/sec) 
( p )  K 

x l o o  x 

1.366 
1.406 

, 1.525 
1.652 
1.756 
1.848 
1.935 
2.032 
2.195 
2.286 
2.490 
2.704 
2.964 
3.257 
3.537 
3.759 
3.986 
4.241 
4.485 
4.985 
5.243 
5.567 
5.993 
6.530 
7.001 
7.514 

7.891 
8.000 
8.0% 
8.250 
8.411 
8.452 
8.582 
8.763 
8.841 
8.983 
9.174 
9.420 
9.759 

10.05 
10.37 
10.63 
10.91 
11.16 
11.44 
11.95 
12.34 
12.71 
13.14 
13.73 
14.20 
14.87 

Helium 

x 100 

1.275 
1.450 
1.674 
1.925 
2.176 
2.451 
2.732 
2.970 
3.197 
3.712 
4.205 
4.685 
5.252 
5.729 
6.216 
6.740 
7.185 
7.630 

x 

5.366 
5.453 
5.5 50 
5.689 
5.813 
5.980 

.6.105 
6.248 
6.350 
6.638 . 
6.874 
7.091 
7.391 
7.650 
7.900 
8.200 
8.418 
8.667 

, 

z 

ir 

I Argon 

x 100 x 10'~ 

1.318 
1.506 
1.782 
2.083 
2.265 
2.482 
2.827 
3.073 
3.258 
3.526 
3.794 
4.049 
4.331 
4.983 
5.291 
5.725 
6.030 
6.277 
6.590 ' 

6.970 
7.269 
7.529 

2.016 
2.112 
2.264 
2.352 
2.449 
2.564 
2.705 
2.816 
2.853 
2.998 
3.073 
3.214 
3.348 
3.614 
3.763 
3.929 
4.074 
4.200 
4.333 
4.449 
4.582 
4.688 

# 

, 

Table 4. Summary of the Permeability Parameters of the NC-CGB Graphite Septum at 22.SoC - 

x 10-~ x 100 x ~ o - ~  k 1 0 - ~ ~  ,X 

Hydrogen 0.8863 1.420 I 6.40 9.82 9.09 

Argon 2.235 6.320 1.48 9.47 9.35 Li 
Helium 1.971 2.001 4.70 10.07 9.40 

He-Ar average 9.77 9.38 
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Fig. 6. Pressure Dependence of the Permeability Coefficients of the NC-CGB 
Graphite Diffusion Septum a t  22.5OC. 

terms of the experimentally determined.variables. Thus 

where 

In view o 

'He = DHeK [DHeK -k DHeAr]- l  (59) 

the theoretical relation for uniform-pressure diffusion, namely, 

1 / 2  -& =(?) e3.16, 
JA, 

a measurement of either J,, or JA, is in effect a measurement of the net flux J. One therefore 
obtains two independent values of J if both individual fluxes are determined, and these may be 

averaged in order to enhance the accuracy of the results. This procedure was in fact employed 
in analyzing the present data. 
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The importance of obtaining values\of the Knudsen coefficient DHeK before performing dif- 

fusion experiments is readily realized by noting its appearance in Eq. (59). Furthermore, as a 

result of this auxiliary equation the expression for DHeAr, Eq. (58), is a transcgndental rela- 

tion. Accordingly, it must be solved by an iterative technique. The number of iterations re- 
quired of course depends upon the value that is chosen as a first approximation to DHeAr, ‘ and 

if one makes a poor choice the convergence can be painfully slow. It is therefore desirable to 

obtain a s  good a first approximation as possible. If several diffusion experiments are performed 
at different pressures, the most convenient method is as follows: For each experiment one cal- 

culates an “apparent” value of nDHeAr from Eq. (58) by taking 6,. = 1. If the reciprocals of 
the values so obtained are th& plotted against l/p, the intercept corresponds to the “true” 
value of nDHeAr since, a s  we have remarked earlier, 6 + 1 a s  l /p  

quently appear to be almost linear, so that the required extrapolation is generally straightfor- 

, 

0. Moreover, the plots fre- 

ward. 
The He-Ar counterdiffusion data which were obtained with the diffusion septum are presented 

in Table 5. Two series of experiments were performed: in the first, the extent of contamination , 

of the two sweep streams was adjusted to be about 1 mole % and the analyses were performed 
with a mass spectrometer; in the second series, the degree of contamination was held a t  about 
0.2 mole %, and thermal conductivity cells were employed in the sweep-stream analyses. The 

diffusion coefficients which are tabulated have been computed in accordance with Eq. (58), 

where the value of DHeK has been taken to b e  4.69 x lo-‘ cm2/sec, as discussed previously. r 
The first approximation to nDHe Ar, a s  determined by the intercept method described above, was 

2.85 x 10“ mole cm-’ sec“; the rapid convergence which was obtained by this method is 

readily seen by comparing this value with the “final” results in the table. 
Except for the geometric factor (e’/q’), thediffusion coefficient DHaAr is given by Eq. (40); 

thus the values presented in Table 5 should vary‘ linearly with reciprocal pressure. This de- 
pendence is illustrated in Fig. 7. 

z 

Parameters for Fission Product Diffusion i n  MSRE Graphites. - W e  are now in a position to 
apply the information which has been obtaindd thus far to cases of interest to the Molten-Salt 

Reactor Experiment. Typical of these is the migration of xenon and krypton against a helium 
atmosphere in the graphite. However, we shell not work out the problem in detail, nor shall we 

even write down the flux expressions; instead, we confine ourselves only to a discussion Qf the 

flow parameters. 

L. 

We begin this section by once more emphasizing that if  al l  but one of the components of a 

gas mixture are present only in trace quantities, one can safely ignore all other trace components 
in describing the diffusion characteristics of any one component. For example, if we wish to 

characterize the transport of trace amounts of xenon and krypton in a helium atmosphere, it is 
unnecessary to consider the effect of xenon on the transport of krypton and vicepersa. Our 
object here, therefore, is simply to obtain values for the quantities DiK and DHe i, where i 
represents either krypton or xenon, which may be applied to the MSRE conditions. These two 

parameters are sufficient to completely describe the migration of the two fission products. 

u 
, 

t 
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Table 5. Helium-Argon Interdiffusion Data Obtained at 24OC with the NC-CGB Graphite Diffusion Septum 

Normal Diffusion 
Constant, 

(mole cm-1 sec-1) 

Diffusion 

-lHe /lAr (cm2/sec) 

Pressure, p Diffusion Rate (mole /set) Rate Ratio, Coefficient 

&HeAr "A)." 
(atm) 

"He A)exp "Ar "exp 

D H e  DHeAr 

x 100 

1.36 
1.57 
1.78 
2.11 
2.71 
3.73 
4.91 
7.70 

1.22 
1.36 
1.53 
1.73 
2.00 
2.54 
3.09 
4.32 
5.00 
5.68 

* 6.42 
7.48 

x 10-6 

3.30 
3.57 
3.96 
4.29 
4.78 
5 -43 
6.11 
6.95 

3.07 
3.29 
3.52 
3.78 
4.15 
4.74 
5.37 
6.02 
6.19 
6.66 
7.10 
7.40 

XH.(L) =XA,(O) * 0.91 Mole % 

- 1.07 2.28 3.08 
- 1.14 2.45 3.13 
-1.19 2.63 3.33 
- 1.37 2.94 3.13 
- 1.63 3.39 2.93 
-1.84 3.85 2.95 
-1.93 4.17 3.17 
-2.33 4.89 2.98 

Av 3.09 f 0.10 

XHe(L) =XAr(0) * 0.19 Mole % 

* 

- 0.97 
- 1.06 
-1.13 
-1.12 ' 

- 1.32 
- 1.56 
- 1.74 
- 1.94 
-1.94 
-2.17 
r2.29 
-2.43 

2.10 3.16 
2,27 3.10 
2.42 3.12 , 
2.61 3.09 
2.85 3.14 
3.30 3.04 
3.72 3.09 
4,16 3.10 
4.22 3.19 
4.62 3.07 
4.90 3.10 

3.04 5.15 

Av 3.10 f0.03 
- 

2.45 
2.30 
2.12 
1.94 
1.68 
1.35 
1.07 
0.76 

2.55 
2.44 
2.29 
2.14 
1.98 
1.74 
1.56 
1.21 
1 .os 
0.99 
0.91 
0.81 

x 

5.16 
4.51 
3.86 
3.31 
2.62 
1.90 
1.39 
0.91 

5.61 
5.10 
4.48 
3.96' 
3.43 
2.76 
2.34 
1.63 
1.36 
1.25 
1.13 
0.98 

x 10-8 

' 2.88 
2.86 
2.82 
2.87 
2.91 
2.90 
2.81 
2.88 

Av 2.87 f 0.03 

2.81 
2.84 - 
2.81 
2.81 
2.82 
2.88 
2.96 
2.89 . 

2.78 
2.92 
2.99 
3.01 

Av 2.88 f 0.06 
- 

. I 

We have selected Kr and Xe for present considerations because the properties of these gases 

are, to a close approAmation, representative of the average values for the volatile species in 

the so-called light and heavy fractions of the total products formed by fission. 
First, however, it is necessary for us to make a few assumptions. The most obvious of these 

is that all of the MSRE graphite bars do not significantly deviate from the diffusion septum with 
respect to internal geometry. In other words, ( E ' / q ' )  is about the same throughout. Further, 

we shall assume that ( E ' / q " )  is reasonably independent 6f temperature, so that the only tempera- 
ture dependence which is exhibited by the gas transport is due to the gases  themselves. Finally, 

we shall choose T = 936OK and p = 2.36 atm (29 psig) as the conditions characteristic of gas 

transport in the MSRE. 
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Fig. 7. Pressure Dependence of the Normal Diffusion Coefficient of the NC-CGB 
Graphite Diffusion Septum for the System Helium-Argon at 24OC. 

I 

If we insert the expression for the average speed F, into Eq. (34), we obtain 

DiK=-(-) , 4 8 RT K O ,  3 r r M i  

i 

V 

where KO is given by the relation presented in Table 2 and depends almost completely upon the 

is likewise dependent only on the geometry of the graphite. Thus, if  the characteristic value of 

geometry of the medium. Simply by rearranging Eq. (60) we see that the grouping ( M , / T ) ' / 2  D,, L J  
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fl DjK is taken to be equal to 9.38 g'l2 cm2  sec-' mole-'/2 at 22S0C, as discussed pre- 

, 

? 

li 

- 
ir 

c 

viously, we obtain 

\ j (61) (Mi/T)'/2 D i ,  = 5.45 lo-' g'12 c m 2  sec-' rnole-'I2 deg-'l2 . 
With this result it is then possible to obtain the Knudsen diffusion coefficients of the three 

gases concerned. These results are listed in Table 6. 

Table 6. Parameters for He-Xe and He-Kr Diffusion in MSRE Graphiter at 936'K 
and 2.36 atm Pressure (MSRE Operating Conditions) 

DIK 'Hef DHef Df 
(cm2/sec)  (cm2 /set) (cm2 /set) (cm2 /set) Gas 

\ 

x lo-' x x 

H e  2.001 8.33 

Kr 9.154 1.82 1.81 1.69 1.64 

X e  11.46 1.45 1.63 1.52 1.32 

We now turn to an  evaluation of the normal diffusion coefficient. As is shown in Table 2, 
this coefficient is the product of two factors: 

DHei = (€'/q')NHej , ' 

in which the "free-space" coefficient aHel is simply the normal diffusion coefficient as de- 

termined for a known pore geometry. The difference between the script and the printed coef- 

ficient is that the internal structure, so to speak, has been removed from the former coefficient, 
but is st i l l  retained in DHei, 

the value adopted from the data in Table 5 is 

' 

Thus far, all we have is a valuesfor nDHcAr which is characteristic of the diffusion septum; 

L 

nDHeAr = (2.87 f 0.05) x mole cm" sec'' , (63) 

which refers to a temperature of 24OC. However, i t  turns out for our purposes to be more con- 
venient to work with the group pDHeAr, where the pressure p is expressed in atmospheres. The 

corresponding value for the diffusion septum is then given by 

pDHcAr t 6.99 x atm cm3 sec-', . (64) 

' The prqblem now reduces to solving Eq. (62) for ( E ' / q ' )  with the value of pD,, , ,  given above 

sion cross section 6 r  diffusion, 7~cr:~ ')*, is known. Alternatively, one can employ experi- 

mentally determined values of the diffusion coefficients i f  these are available. The results are 
often expressed in the form 

\ and a value of  $JHeAr. This latter quadtity can be determined from Eq. (40) provided the colli- 

LJ 

f 

, 
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, where T is the temperature in OK and A and B are constants. For the systems of interest in this 

work, the following equations have been proposed in the literature: 

He-Kr: 
log,, (plgHeKr) = 1.688 (log,, T) - 4.3844, (66b) 

He-Xe: 
log,, (pBHexe) = 1.720 (loglo T) - 4.5251 . ( 6 6 ~ )  

. *  Although these equations reproduce the experimental data only over the temperature range 0 to  
12OoC, the error introduced in employing the equations a t  higher temperatures is normally quite 
small .  From Eq. (66a) we obtain, a t  24OC, & - 

/ 

pl (3HeAt  = 0.748 atm an2 sec" ; (67) 

thus 

( E ' / q ' )  = 9.34 10-4 . (68) 

It is now possible to obtain normal diffusion coefficient values for any gas  pair for this 
particular graphite simply by employing the relation 

D , ,  = (9.34 x ID,, . 
As an example, we have also presented in Table 6 the charaderistic values for He-Xe and He-Kr 
diffusion for approxidate MSRE operating conditions. 

Similarly, one can predict the overall coefficient for diffusion D, from the relation 

1 1  1 

, 
c 

These coefficients for Kr and Xe diffusion are also listed in Table 6. The important thing to 
. note is that D, and the corresponding D,, differ by only about 10%; in other words, normal dif- 

fusion associated with the coefficient DHe does not contribute significantly to  overall trans- 

port in the diffusion septum. Moreover, this septum was sectioned from the MSRE graphite in 
that region where normal diffusion can reasonably be assumed to  be maximal. It therefore ap- 

pears quite justifiable to  ignore normal diffusion effects in considering gas transport in MSRE 
graphite. 

- I 

ci 
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/ Summary 

In the experimental section of this report our primary concern was the determination of the 

parameters D,,, Bo, and D,, (or E ‘ / q ’ )  for a given septum. We have demonstrated that the 
former two coefficients can be  evaluated on the basis of the pressure dependence of the per- 

meability coefficient, whereas D , is conveniently determined from diffusion experiments which 

are performed under conditions of constant total pressure. 

The importance of these parameters lies in the fact that they specify completely the char- 
acteristics of the medium geometly; once evaluated, these quantities may then be manipulated 

SO as to describe gas transport under a variety of conditions. In other words, additional experi- 

ments need not be performed i f  gases  other than those employed in the “calibration” of the 

medium are of interest, or if the pressure and/or temperature conditions are varied. 

Perhaps the most significant feature with regard to MSRE application is that the Knudsen 
mechanism predominates in describing gaseous diffusion through this type of graphite. This 

finding provides a most welcome simplification t o  analyses of fission product migration. 
Although the data presented here .for the MSRE graphite may be employed io obtain rough 

estimates of its gas transport characteristics, we wish to caution the reader of the possibility 
that the sample used in this work may or may not be typical of all of the MSRE material. Our 
specimen was machined from Bar # 23 [ORNL lot # 1, NCC lot # 12 (of 14)I. Provided the fab- 
rication of this bar has  been reasonably duplicated in the manufacture of the remainder of the 
material, the flow parameters may be adopted with a fair degree of confidence. Otherwise, how- 

ever, the results presented here can be least typical of MSRE graphites. 

nonhomogeneity in the structure of the finished graphite material. This can lead to rather dif- 

ferent results regarding fission product transport and retention, parkcularly since radioactive 

1 , 

In conclusion, we also wish t o  emphasize that impregnation treatments frequently impart 
s 

~ decay must be taken into account. We shall consider this problem for the case of MSRE graphites 
in a later report. 

V. APPENDIX 

More detailed presentations of the kinetic theory of gases and gas transport through porous 
media may be had by consulting the following selected references: 

P. C. Carman, Flow of Gases Through Porous Media, Academic, New York, 1956. 
R. D. Present, Kinetic Tbeory of Gases, McGraw-Hill, New York, 1958. 
J. 0. Hirschfelder, C. H. Curtiss, and R. B. Bird, Molecular Theory of Gases and-Liquids, 

John Wiley 8h Sons, New York, 1954. 
R. D. Present and A. J. deBethune, Phys. Rev. 75, 1050 (1949). 
E. A. Mason, A. P. Malinauskas, and R. B. Evans 111, J.  Chem. Phys. 46, 3199 (1967). 
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