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THERMAL-STRESS AND STRAIN-FATIGUE ANALYSES OF THE 
MSRE FUEL AND COOLANT PUMP TANKS 

C. H. Gabbard 

Abstract 

Thermal-stress and s t ra in-fat igue analyses of the MSRE 
f u e l  and coolant pump tanks were completed f o r  determining 
the quantity of cooling a i r  required t o  obtain the maximum 
l i f e  of the pump tanks and t o  determine the  acceptabi l i ty  of 
the pump tanks f o r  the intended service of 100 heating cycles 
from room temperature t o  1200°F and 500 reactor  power-change 
cycles from zero t o  10 Mw. 

A cooling-air flow ra t e  of 200 cfm f o r  the f u e l  pump tank 
was found t o  be an optimum value tha t  provided an ample margin 
of safety.  
the required service without a i r  cooling. 

The coolant pump tank was found t o  be capable of 

Introduction 

The f u e l  pump f o r  the Molten S a l t  Reactor Experiment' (MSRE) i s  a 

sump-type centr i fugal  pump composed of a stationary pump tank and volute 

and a ro ta t ing  assembly (see Fig. 1). 

i s  constructed of INOR-8 (72% N i ,  16% Mo, '7% C r ,  5% Fe), i s  a par t  of the 

primary containment system, and therefore  the highest degree of r e l i -  

a b i l i t y  i s  required. The pump i s  similar t o  other high-temperature 

molten-salt and liquid-metal pumps that have accumulated many thousands 

of hours i n  nonnuclear tes t - loop service. Although these nonnuclear 

pumps have been highly successful, they have not been subjected t o  the 

degree of thermal cycling which may occur i n  a nuclear plant.  

fore  cannot be assumed from the operating records t h a t  pwnps of t h i s  type 

w i l l  be adequate f o r  the MSRE. 

The pump tank and volute, which 

It there- 

Stress  calculations* were completed i n  accordance with the ASME 

Boiler and Pressure Vessel Code f o r  determining the w a l l  thicknesses and 

nozzle reinforcements required t o  safely withstand am in te rna l  pressure 

~~~~~ ~ 

*Performed by L. V. Wilson. 

. 
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W of 50 ps i .  I n  addition t o  these pressure s t resses ,  the f u e l  pump tank 
w i l l  be subjected t o  r e l a t ive ly  high thermal s t resses  because of the high 

thermal gradients which w i l l  be imposed by nuclear heating and the  large 

temperature difference between the  top  flange, which will be a t  250 t o  

300°F, and the pool of molten salt i n  the tank, which w i l l  be a t  1225°F. 

Although the coolant pump will not be subjected t o  nuclear heating, there 

w i l l  be a large temperature difference between the top  flange and the 

molten salt i n  the pump tank. 

Since the ASME Pressure Vessel Code and Code Case Interpretat ions 

do not adequately cover the design of a vessel  a t  creep range tempera- 

tu res  under r e l a t ive ly  high cycl ic  thermal s t ress ,  the  thermal s t r e s s  

evaluation w a s  conducted under the ru les  of the  Navy Code.3 The Navy 

Code covers the design of pressurized-water reactor systems. 

of design i n  the creep range are not exp l i c i t l y  covered, but design c r i -  

teria are  established f o r  vessels  subjected t o  thermal s t r e s s  and cyclic 

p l a s t i c  s t r a in .  Thermal s t resses  a re  considered as t rans ien t  i n  the Navy 

Code and must be evaluated on a fa t igue bas is  using the estimated maximum 

numbers of various operational cycles and Miner's accumulative damage 

theorem as the design   rite ria.^ 

The problems 

Automatic flow control of the cooling air t o  the upper pump tank 

surface was i n i t i a l l y  proposed so t h a t  the temperature gradient on the 

spherical  s h e l l  would remain r e l a t ive ly  constant at various operating 

conditions. 

matic control system made it desirable, however, t o  determine whether a 

fixed air  flow could be used f o r  a l l  the operating conditions of the  pump. 

Calculations were therefore made f o r  es tabl ishing the temperature 

The complexity and possible lack of r e l i a b i l i t y  of the auto- 

dis t r ibut ions,  thermal s t resses ,  pressure stresses,  and permissible num- 

ber of operational cycles f o r  various modes of operation and various 

cooling air  flow ra tes .  From t h i s  information, it was  possible t o  se lec t  

operating conditions t h a t  would permit the maximum number of operational 

cycles and provide an ample f ac to r  of safety above the 100 heating and 

500 power-change cycles anticipated f o r  the MSRE. 

Y 



4 

Calculational Procedures 

Strain Cycles 

Since thermal s t resses  are  considered t o  be t rans ien t  and i n  some 

cases subject t o  r e l i e f  by s t r e s s  relaxation at  operating temperatures, 

they must be evaluated on a strain-fatigue basis,  a s  required by the Navy 

Code. 

the pump: 

I. 

Two types of s t r a in  cycles will occur during normal operation of 

heating and cooling when the reactor system is  heated from room tem- 

perature t o  operating temperature and returned t o  room temperature, 

and 

power-change cycles when the reactor  power i s  raised from zero t o  10 

Mw and returned t o  zero. 

2. 

The change i n  s t r a in  must a lso be considered f o r  a loss-of-cooling 

air  incident i n  which the operating conditions would change from (1) re-  

actor  power operation at  10 Mw with design air  flow t o  (2)  operation at 

10 Mw with no a i r  flow t o  (3) zero power operation with no a i r  flow. 

Temperature Distributions 

The i n i t i a l  s tep i n  the thermal-stress and s t ra in-fat igue analyses 

w a s  t o  determine the temperature d is t r ibu t ions  i n  the pump tank f o r  various 

operating conditions based on the e f f ec t s  of i n t e rna l  heat generation, 

conductive heat f l o w ,  convective and radiat ive heat t r ans fe r  with the 

salt, and cooling of the shielding plug and upper pump tank surface. 

generalized heat conduction code': (GHT Code) w a s  used t o  obtain the  tem- 

perature dis t r ibut ions.  During reaotor power operation, the fue l  pump 

tank will be heated by g a m  radiat ion from both the reactor  vessel  and 

the  f u e l  s a l t  i n  the pwrrp tank and by beta radiat ion from the f i s s ion -  

product gases. 

operation at  10 Mw was calculated* t o  be 18.70 Btu/hr-in.3 a t  the inner 

surface of the upper portion of the pump tank, giving an average heating 

r a t e  through the 1/2-in. -thick pump tank w a l l  of 16.23 Btu/hr*in. 3 .  The 

g a m  heat-generation r a t e  i n  the shielding plug above the pump tank 

The 

The maximum gamma heat-generation r a t e  during reactor  

Walculated by B. W .  Kinyon and H. J. Westsik. 
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w a s  calculated a t  increments of 1/2 in .  based on an exponential decrease 

i n  the heating ra te .  

Btu/hr-in.2, was estimated by d is t r ibu t ing  the t o t a l  beta energy emitted 

i n  the pump tank over the pump-tank surface exposed t o  the fission-product 

gases (see Appendix A ) .  

The beta heating, which varied from 4.80 t o  22.22 

Preliminary calculations with the GIEC Code indicated that controlled 

cooling of the  upper pump tank surface w a s  necessary, not only t o  lower 

the maximum temperature, but a l so  t o  reduce the temperature gradient i n  

the spherical  portion of the pump tank near i t s  junction with the  volute 

support cylinder i n  order t o  achieve acceptable thermal s t resses .  These 

calculations a l so  predicted excessively high temperatures i n  the volute 

support cylinder between the pump tank and the pump volute. These high 

temperatures were caused by a ser ies  of ports i n  the volute support cyl in-  

der w a l l  f o r  draining the shaft labyrinth leakage back in to  the ~ump tank. 

The drain ports  were or ig ina l ly  located at the bottom of the cylinder 

and r e s t r i c t ed  the conduction of heat downward i n t o  the s a l t .  The m a x i -  

mum temperatures were reduced t o  an acceptable l eve l  by centering the 

drain por t s  between the punrp tank and the pump volute so that heat con- 

duction would be unrestricted i n  the both directions.  

d i s t r ibu t ions  f o r  zero power operation at 1200"F, zero power operation 

a t  1300"F, and 10-Mw operation at 1225°F were obtained f o r  various cooling- 

air  flow r a t e s  by varying the effect ive outer-surface heat t ransfer  coef- 

f i c i en t .  Temperature d is t r ibu t ions  were a l so  calculated f o r  10-Mw opera- 

t i on  a t  1225"F, zero power operation at  1200"F, zero power operation a t  

1300°F, and zero power operation at  1025°F without external  cooling. 

method of obtaining the effect ive outer-surface heat t r ans fe r  coef f ic ien ts  

f o r  the  various conditions i s  described i n  Appendix B. 

volute support cylinder geometry considered i n  these calculations i s  

Final  temperature 

The 

The p u q  tank and 

shown i n  Fig. 2. 

Temperature Distribution Curve F i t t i n g  

Before the  meridional and axial temperature d is t r ibu t ions  of the 

pump tank can be used i n  the thermal s t r e s s  equations, they must be ex- 

pressed as equations of the following form (see p. 66 f o r  nomenclature): 
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W In te rna l  Volute Support Cylinder "A" 

+ Ta2L + T L 2 + Ta4L 3 
'a = , a3 

External Volute Sumort Cvlinder "B" 

0 = T + T L + T L 2 + Tb4L 3 + Tb5e -bL b b l  b2 b3 

Pump Tank Spherical Shel l  

T c l  
+ Tc2 c3 c e ye 

+ T Y + Tc4Yc 2 -+ Tc5Yc 3 0 = -  

For the in t e rna l  cylinder and the spherical  shel l ,  the  GHT tempera- 

tu re  d is t r ibu t ion  data  were f i t t e d  t o  the equation by the use of a l e a s t -  

squares curve-f i t t ing p r ~ g r a m . ~  For the external cylinder, manually f i t  

equations containing only the exponential terms were found %o f i t  ex- 

ceptionally w e l l  t o  within about 2.5 in .  of the top flange, where exces- 

sive e r ro r s  were encountered. On the other hand, the least-squares-f i t  

equations containing a l l  the terms f i t  very well i n  the v i c in i ty  of the 

top flange but deviated near the cylinder-to-shell  junction. A comparison 

of the data  obtained with the two f i t t i n g  methods and the GHT data f o r  

the external  cylinder i s  shown i n  Fig. 3. Since the cylinder-to-shell  

junction i s  considered t o  be the  most c r i t i c a l  area because of i t s  high 

operating temperature, the manually f i t  equations were used f o r  t h e  ex- 

t e r n a l  cylinder. 

typ ica l  sets of GHT temperature-distribution data.  

The points on Figs. 4 and 5 show the "fit" obtained f o r  

T herma1 - St  r e  s s Analvsi s 

I n  order t o  calculate  the thermal s t resses ,  the pump tank and volute 

support cylinder were considered t o  be composed of t h e  following members, 

as shown i n  Fig. 2: 
1. an in t e rna l  cylinder extending from the volute t o  the junction with 

the spherical  shell ,  cylinder "A, 

Y 

. 
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2. an external  cylinder extending from the junction with the spherical  

s h e l l  t o  the top flange, cylinder "B," and 
the  pump tank spherical  shell. 3 .  

A n  Oracle program* was  used t o  obtain the pressure s t resses ,  the 

s t resses  from the a x i a l  load on the cylinder, the thermal s t resses  re -  

su l t ing  from temperature gradients i n  e i t h e r  o r  both cylinders, and any 

combination of these loadings. 

continuous (i .e. ,  has no boundary other than the cylinder junction) and 

i s  a t  zero temperature. The zero-temperature assumption required that 

the temperature functions of the cylinders be adjusted t o  provide the 

proper temperature re la t ionship between the  three members. The boundary 

conditions f o r  the ends of the two cylinders specified tha t  the slope of 

the cylinder w a l l s  was zero and that the r ad ia l  displacements would be 

The Program assumes that the  sphere i s  

q h e  Oracle program f o r  analysis of symmetrically loaded, r ad ia l ly  
joined, cylinder-to-sphere attachments was developed by M. E. LaVerne and 
F. J. W i t t  of ORNL. 
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equal t o  the f r ee  thermal expansion of the members at t h e i r  par t icu lar  

temperatures. It w a s  recognized a t  the beginning that some degree of 

e r ro r  i n  the thermal-stress calculations would be introduced by the  ab- 

sence of a thermal gradient on the sphere; but i n  the  cases where air  

cooling w a s  used t o  l i m i t  the gradient, the r e s u l t s  were believed t o  be 

reasonably accurate, Later calculations showed, however, t ha t  the  

s t resses  were very sensit ive t o  the  temperature gradient on the sphere, 

and therefore the Oracle code was used only t o  evaluate the pressure 

s t resses  and t he  s t resses  from axial loads. 

I n  order t o  calculate the thermal s t resses ,  including the e f f ec t s  

of the thermal gradient on the sphere, it was necessary t o  subst i tute  a 

conical she l l  f o r  t he  sphere. The angle of in te rsec t ion  between the cone 

and cylinders was  made equal t o  the equivalent angle of intersect ion on 

the ac tua l  structure.  This subst i tut ion was required because moment, 

displacement, slope, and force equations were not available f o r  thermal- 

s t r e s s  analysis of spherical she l l s  with meridional thermal gradients. 

Thermal s t resses  i n  the two cylinders and the cone were calculated 

by the use of the equations and procedures outlined i n  re fs .  &9. I n  

order t o  evaluate the four integrat ion constants required f o r  each of 

the three members, it was necessary t o  solve the 12 simultaneous equa- 

t ions  which described the following boundary and compatibility 

of the structure:  

Cylinder "A" a t  Volute Attachment. The slope of cylinder 

taken as zero and the def lect ion a s  -al. 

conditions 

"A" was 

Cylinder "B" at Top Flange. The slope of cylinder "B" w a s  taken as 

zero and the  deflection a s  -mi. 

the meridional force was taken a s  zero. 

Cone at Outside Edge. The slope of the cone w a s  taken a s  zero and 

Junction of Cylinder "A," Cylinder "B," and Cone. The summation of 

moments w a s  taken a s  zero; the summation of r ad ia l  forces w a s  taken as 

zero; the slopes of cylinder "A," cylinder "B," and the cone were taken 

t o  be equal; and the deflections of cylinder "A," cylinder "B," and the 

cone were taken t o  be equal. 

f 

. 
w 
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The following 12 equations, which are more completely derived i n  

Appendix C, describe the  boundary and compatibil i ty conditions given 

above : 

E c w /  = c w/ + c w' + c3aw; + c4aw:, ; na n l a  1 2a 2 

b2 - 0.00711J1- 1.3J2 - 122.82J3 - 324.9J4 - 229.41Tb5 F 
1 

; ( 3 )  

C Q + 4aB (c na n 

= 6.2094(79.38J4 + 3.0J3) - 

- 3U.12(Ta4 + Tb4) + 229.41Tb5 b3 F ; (4) 
1 

b 
C W' + CnbW[ = 279.04(Ta2 + Tb2 ) - 1116.2Tb5 F ; 

1 na n 

2 
- aB Z C  W /  - - Bc t an  2 9 C W /  = 1484.65Ta2 + nc nc 

t C  
na n t 

(5)  

+ 64.983(9.9225J2 - l O . l O l J ,  + 98.456J3 + 976.93J4) ; (6 )  
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Tb5 
CnbNn = 154.05(Tal - Tbl) - 616.21 - 

CnaNn - ; 
F1 

= -12895.8J4 - 200.68J3 ; 

. 
e 

G nc W' nc = 0.0408J1 - 24.503J2 - 600.37J3 - 14?10.6J4 ; (9) 

CncQnc = 196.02J4 + 3J3 ; (10) 

b 
C W' = 279.04(Tb2 + 15.94Tb3 + 190.56Tb4) - 1116.2Tb5 F ; (11) 

2 nb n 

4 - F1 
CnbN, = 154.05Tb5 

F2 

I n  these equations, 

F2 = F1 e dY , 

J1 = 20.9cl , 

J2 = 459.95Tc5 - ll.555Tc3 

J3 = 17.183Tc4 , 
J4 = 19.165Tc5 . 

, 

W 
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L Equations (1) through (12) 

ta ining the unknown integration 

are arranged so that the l e f t  side 

constants i s  dependent only on the 

con- 

specif i c  

pump tank configuration, while the r igh t  side containing the thermal- 

gradient terms will vary f o r  each case. 

After obtaining the four integrat ion constants f o r  each member, the 

bending and membrane s t resses  can be calculated using the following equa- 

t ions  f o r  e i the r  cylinder o r  the cone: 

2 
u = -  
In* t 

For the  pr incipal  meridional and circwnferential  s t resses  the applicable 

equations are: 

For cylinder “A,” 



14 

N e = - C C  na N n ’ 

N + = O  . 
For cylinder ”B,” 

1 2 -dy 
C nb M n - 2D- (Tb3 + 3Tb4 5 ”) - D b  y e > 

4 N = - c,~N, - E W ~ ~  e -dy d 9 

d4 + 4 e 

N + = O  . 
For the  cone, 

+ 1.35 + 2.3J3P1 + 2.2J4P3 , M+ = C CncMyn + ~ 1 ~ 2  2 

- JlK2 + 1.35 + 1.6J P + 1.2667J4P3 7 2 3 1  

I n  order t o  f a c i l i t a t e  t he  solution of several  cases and t o  reduce 

the  amount of time involved i n  calculat ing complete s t r e s s  dis t r ibut ions,  

an IBM 7090 program was wri t ten f o r  the  MSRE pump configuration. 

program calculates  the temperature-dependent constants of the 12 s i m u l -  

taneous equations, solves the  equations f o r  t he  12 in tegra t ion  constants, 

and calculates  the  bending, membrane, and pr inc ipa l  stresses a t  65 loca- 

t ions .  

solved and the  constants i n  the  temperature d i s t r ibu t ion  equations a re  

included as input data.  

The 

Up t o  25 cases can be solved, and the  number of cases t o  be 

A s e t  of general input data  i s  a l so  required 

. 

. 

I 
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that contains the left-hand members of the simultaneous equations and the 

posit ion functions tabulated i n  re fs .  7 and 9. 

A special  test case with a uniform-temperature conical s h e l l  was  

prepared f o r  the IBM 7090 program t o  check the va l id i ty  of subst i tut ing 

the conical she l l  f o r  t he  spherical  s h e l l  and t o  obtain an over-all  com- 

parison between the r e su l t s  of the IBM and Oracle programs. 

t i v e  r e s u l t s  a r e  shown i n  Table 1 fo r  the junction of the three members. 

A s  may be seen, the cone s t resses  agreed sa t i s f ac to r i ly  a t  the junction 

where they were a maximum. 

programs a t  other meridional posit ions were not considered important f o r  

the cases of i n t e re s t .  

The compara- 

Deviations between the r e s u l t s  of the two 

Table 1. Comparative Results for Conical and Spherical Representation 

-~ ~~ 

Axial or Meridional Principal Circumferential Principal 
Stress (psi) Stress (psi) 

IBM 7090 Programa Oracle Programb IBM 7090 Program Oracle Program 

Cylinder "A" -3 276 -3 374 -3 047 -3 351 

Cylinder "B" 7 091 7 365 -4 018 -4 548 
Cone or sphere -25 196 -25 703 -3 572 -3 967 

?For cylinder-to-cone junction. 
bFor cylinder -to- sphere junction. 

Thermal-stress calculations were completed f o r  the various operating 

conditions l i s t e d  previously i n  the section on temperature d is t r ibu t ions .  

Strain-Cvcle Analvsis 

I n  order t o  determine the  optimum cooling-air flow r a t e  and the l i f e  

of the purrrp tank, it w a s  necessary t o  determine the allowable number of 

each type of operational cycle (heating and power change) f o r  each of 

several  cooling-air flow ra tes .  

values f o r  the various operational cycles and N 1, N2, . . ., Nn are  the 

allowable number of cycles determined from the thermal-stress and s t ra in-  

fa t igue data, the "usage factor"  i s  defined a s  

If pl, p2, ..., pn are  the anticipated 

(pi/Ni). A design a i r  

V 
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flow can then be selected t o  minimize the usage fac tor  and give the maxi- 

mum punrp-tank l i f e .  

The permissible number of each type of operational cycle i s  deter-  

mined by comparing the maximum s t r e s s  amplitude f o r  each type of cycle 

with the design fat igue curves. The maximum s t r e s s  amplitude includes 

the thermal s t resses  caused by meridional thermal gradients, the thermal 

s t resses  caused by transverse thermal gradients, and the  pressure s t resses  

caused by the 50-psi in te rna l  pressure. 

A discussion of the various types of s t resses  (primary, secondary, 

local,  and thermal) and the e f f ec t s  of each on the design of the pump 

tanks i s  given i n  Appendix D. 

determining the  allowable number of cycles i s  presented, and the design 

fat igue curves of INOR-8 are  included. 

A discussion of the procedure used i n  

Result s 

Temperature Distributions 

The r e su l t s  of the GHT temperature d is t r ibu t ion  calculations f o r  

pertinent operating conditions a re  shown i n  Figs. 4 and 5 f o r  the f u e l  

and coolant pumps. The spherical s h e l l  meridional temperature d is t r ibu-  

t ions  f o r  the fue l  pump a t  various cooling air  flow r a t e s  and reactor  

power leve ls  of zero and 10 Mw are  shown i n  Figs. 6 and 7. 

Thermal Stresses 

Typical thermal-stress p ro f i l e s  of the f u e l  pump at a cooling-air 

flow ra t e  of 200 cfm with the reactor  power a t  zero and 10 Mw a re  shown 

i n  Figs,  8 and 9; similar prof i les  of the coolant purrrp a re  shown i n  Figs. 

10 and 11. The re la t ive ly  high s t resses  at the top flange a re  believed 

t o  be caused by the poor f i t  of the temperature equations i n  that area, 

as shown i n  Fig. 3. The s t r e s s  a t  the top flange w a s  calculated t o  be 

15 000 p s i  when the least-squares-f i t  temperature equation w a s  used. 

w a s  found, however, that t h i s  equation introduced s t r e s s  e r ro r s  a t  the 

cone-to-cylinder junction. Therefore, the actual  s t r e s s  p ro f i l e s  along 

the en t i r e  length of the external cylinder would probably be b e t t e r  

It 
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represented by a composite of the two s t r e s s  prof i les ;  that is, it would 

be best  t o  use the s t r e s s  prof i les  from the manually f i t  temperature func- 

t ions  near the junction and from the least-squares functions near the top 

flange. 

and since the s t resses  a t  the top flange do not l imi t  the number of per- 

missible s t r a in  cycles, the s t resses  from the manually f i t  equations were 

used i n  completing the strain-cycle analysis.  

long that the temperature e r ror  a t  the top flange has a r e l a t ive ly  small 

e f f ec t  on the s t resses  a t  the cylinder-to-shell  junction. 

Since the cone-to-cylinder junction i s  the more c r i t i c a l  area 

The cylinder i s  suf f ic ien t ly  

Strain Cycles 

The r e su l t s  of the strain-fatigue analyses are  presented i n  Tables 

2, 3, and 4. A predicted usage fac tor  of 0.8 or  l e s s  indicates  a safe 

Table 2.  Fuel Pump Strain D a t a  for Heating Cycle 

Maximum Cycle Cycle 
Stress  Allowable Fraction Fraction i n  

Cycle s Per 100 Cycles, 

Stress  
Amplitude 

A i r  

Cycle p, /N, 
(Ps i  1 In tens i ty  

( P s i  1 ( C f d  

50 
100 
150 
200 
2 50 
300 

50 
100 
150 
200 
2 50 
300 

200 

31 124 
14 400 
14 143 
16 095 
21  760 
26 955 

28 966 
19 104 
20 590 
23 811 
30 895 
36 099 

94 885 

Heating Cycle t o  1200°F 

15 562 700 0.00143 
7 200 2 500 0.00040 
7 072 2 500 0.00040 
8 048 2 100 0.00047 
10 880 1 300 0.00077 
13 477 880 0.00114 

Heating Cycle t o  1300°F 

14 483 640 0.00156 
9 552 1 300 0.00076 
10 295 1 150 0.00086 
11 905 900 0.00111 
15 447 550 0.00181 
18 049 420 0.00238 

Loss-of-Cooling-Air Accident 

47 443 85 0.012 

0.143 
0.040 
0.040 
0.047 
0.077 
0.114 

0.156 
0.076 
0.086 
0.111 
0.181 
0.238 

1.2 

. 

4 

. 

. 
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L Table 3.  Fuel Pump St ra in  Data for Power-Change 
Cycle from Zero t o  10 Mw 

Cycle 

(Psi  1 Cycle 

S t ress  
Amplitude 

Maximum 

Range 
Allowable Fraction 

Cycles Per 
(Psi  1 

50 
100 
150 
200 
250 
300 

37 971 18  985 520 0.00192 
24 763 12 382 1 000 0,001 
18 930 9 465 1 600 0.000625 
1% 814 9 407 1 600 0.000625 
18  775 9 388 1 600 0.000625 
18  639 9 320 1 600 0.000625 

Cycle 
Fraction i n  
500 Cycles, 

P2/N2 
0.961 
0.  SO0 
0.312 
0.312 
0.312 
0.312 

Total 
Usage 

Factor, 
Z Pi/Ni 

1.10 
0.54 
0.352 
0.359 
0.389 
0.426 

Table 4. Coolant Pump St ra in  Data f o r  Heating 
and Power-Change Cycles 

Heating Cycles Power Change 
from Zero 

To 1200°F To 1300°F t o  10 Mw 

Maximum stress intensi ty ,  p s i  

S t ress  amplitude, p s i  

Allowable cycles 

Total  re laxat ion 
P a r t i a l  re laxat ion 

Cycle f r ac t ion  per cycle 

Total relaxation 
P a r t i a l  re laxat ion 

Cycle f r ac t ion  i n  100 cycles 

Total  re laxat ion 
P a r t i a l  relaxation 

Cycle f r ac t ion  i n  500 cycles 

Total  usage factor" 

Total  re laxat ion 
P a r t i a l  re laxat ion 

63 650 

31 825 

220 
520 

0.00454 
0.00192 

0.454 
0.192 

69 100 10 160 

34 550 5 080 

4 400 
140 
290 

0.00227 
0.00714 
0.00344 

0 .7 l4  
0.344 

0.114 

0.568 
0.306 

?For 100 heating cycles t o  1200°F and 500 power cycles from zero t o  
10 Mw. 
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operating condition f o r  the  desired number of heating and power-change 

cycles. 

t i o n  a t  each operating condition and are  therefore conservative. 

location of maximum s t r e s s  i n t ens i ty  during the  heating cycle i s  not 

necessarily the same as the location of m a x i m u m  stress range during the 

power-change cycle. This a l so  provides Conservative resu l t s ,  since the  

maximum s t r a i n s  for each type of cycle were added t o  determine the  usage 

factor ,  and the  t o t a l  s t r a i n  a t  the ac tua l  point of maximum s t r a i n  would 

be l e s s  than the  s t r a i n  value used. Since the pump tank will safely en- 

dure the desired number of heating and power cycles w i t h  t h i s  conservative 

approach, it w a s  not considered necessary t o  locate  and determine the  

ac tua l  m a x i m u m  t o t a l  s t ra in .  The coolant pump w i l l  operate a t  a lower 

temperature than the  f u e l  pump, so the  stress relaxat ion during each 

cycle will probably be incomplete and therefore  a la rger  number of cycles 

w i l l  be permissible. A s  shown i n  Table 4, t he  assumption of p a r t i a l  re- 
laxation rather than t o t a l  re laxat ion permits more than twice the number 

of heating cycles. For t he  f u e l  pump, thermal-stress and p l a s t i c - s t r a in  

calculat ions were  a l so  made f o r  the short  36-in.-diam cylinder connect- 

ing the two tor i spher ica l  heads. 

th i s  locat ion w a s  found t o  be grea te r  than those shown i n  Table 2, and, 
therefore,  the  cycles i n  the cylinder do not l i m i t  t he  l i f e  of the  pump 

tank. 

The r e s u l t s  a re  based on the  assumption of t o t a l  s t r e s s  relaxa- 

The 

The permissible number of cycles a t  

Pressure and Mechanical Stresses  

The r e s u l t s  of  the  pressure stress calculat ions made with the  Oracle 

program are  shown i n  Figs. 12 and 13. The s t resses ,  which include both 

primary and discontinuity s t resses ,  are f o r  a pressure of 1.0 p s i  and are 

d i r e c t l y  proportional t o  pressure. The maximum stress from the  axial  

load e x i s t s  at  the suction nozzle attachment and i s  equal t o  1.766 times 

the load i n  pounds. 

Re c ommendat ions 

. 

The  strain-cycle data of Tables 2, 3, and 4 indicate  t ha t  t he  de- 

s i red number of s t r a i n  cycles on the f u e l  pump can be safe ly  to le ra ted  
W 
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when any cooling a i r  flow between 100 and 300 cfm i s  used; and, there- 

fore,  the a i r  cooling can be controlled manually by a remotely operated 

control  valve. 

mended f o r  the  following reasons: 

A cooling-air flow r a t e  of approximately 200 cfm i s  recom- 

1. 

2. There i s  a wide range of acceptable flow rates on e i t h e r  side 

The predicted usage fac tor  i s  reasonably near the  minimum value. 

of t h i s  design a i r  flow ra t e .  

3. A t  a i r  flow r a t e s  greater  than 200 cfm, the  maximum s t r e s s  in -  

t e n s i t y  during zero power operation increases r e l a t ive ly  rapidly and de- 

creases the permissible number of heating cycles. 

Since there  i s  a poss ib i l i t y  of e r ro r  i n  the temperature d is t r ibu-  

t i o n  calculations because of uncertaint ies  i n  the heat generation rates 

and heat t ransfer  coeff ic ients ,  it i s  recommended t h a t  the temperature 

gradient on the  spherical  she l l  be monitored by using two thermocouples 

spaced 6 in.  apar t  rad ia l ly .  

ference between the two thermocouples and therefore reduces the  e f f ec t  

of any thermocouple e r ror .  

s h e l l  near the  junction i s  of primary importance i n  determining the ther -  

m a l  s t resses ,  the d i f f e r e n t i a l  temperature measurements and the data of 

Figs,  6 and 7 can be used t o  set the ac tua l  cooling-air flow r a t e  on the  

pump. T h i s  method has the disadvantage of requiring several  adjustments 

as the  temperature and power l eve l  are raised t o  the  operating point.  

If d i r ec t  measurement of the  flow r a t e  were possible minor adjustments 

could be made a f t e r  the system reached operating conditions. Since no 

cooling-air  flow measuring equipment i s  planned f o r  the f u e l  pump at  the 

present t i m e ,  a preoperational ca l ibra t ion  of t h e  cooling-air  flow r a t e  

versus valve posit ion should be made t o  permit the approximate air  flow 

r a t e  t o  be s e t  p r io r  t o  high-temperature operation. 

T h i s  gives the maximum temperature d i f -  

Since the  thermal gradient of t h e  spherical  

The design temperature difference between the two thermcouples f o r  

monitoring the  thermal gradient i s  100°F a t  a power l e v e l  of 10 Mw and 

a thermocouple spacing of 6 in .  

ference i s  200°F f o r  10-Mw operation. After the cooling-air  flow r a t e  

has been s e t  f o r  10-Mw operation, a readjustment of t he  flow should be 

made, i f  necessary, a t  zero power operation t o  prevent a negative thermal 

gradient on the sphere. 

The maximum allowable temperature d i f -  

This adjusted cooling-air  flow should then become 

4 

W 
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the  operating value. 

of the reactor  it should be kept i n  mind t h a t  any s igni f icant  change i n  

the f u e l  pump cooling-air  flow r a t e  will cons t i tu te  a s t r a i n  cycle and 

will represent a decrease i n  the  usable l i f e  of the pump tank. 

an e f f o r t  should be made t o  keep the  number of cooling-air  flow r a t e  ad- 

justments t o  a minimum. 

During the p r e c r i t i c a l  t e s t ing  and power operation 

Therefore, 

The e f f ec t  of heating the  system t o  1300°F i s  a l s o  shown i n  Tables 

2, 3, and 4. The f u e l  and coolant pumps can safely endure only about 

half  as many heating cycles t o  1300°F as t o  1200°F. 

pump, 100 heating cycles t o  1300°F would e s sen t i a l ly  consume the  l i f e  of 

t he  pump tank. 

r e a l i s t i c ,  and no addi t ional  conservatism should be claimed by i t s  use. 

Therefore, it i s  recomnended t h a t  the  system not be heated t o  1300°F on 

a routine basis. 

For the coolant 

A t  1300°F the assumption of t o t a l  stress relaxat ion i s  

Since the  f u e l  and coolant pump tanks a re  primary containment mem- 

bers, the  maximum value of the  usage f ac to r  must not exceed 0.8, which 

i s  the acceptable upper l i m i t .  To avoid exceeding this l i m i t ,  an accu- 

r a t e  and up-to-date record should be maintained of the  usage f ac to r  and 

the complete s t r a i n  cycle h is tory  of both the  f u e l  and the  coolant pumps. 

I n  calculat ing the usage factor ,  p a r t i a l  power-change cycles i n  which 

reactor  power i s  increased only a f r ac t ion  of the t o t a l  power should be 

considered as complete power cycles unless the number of p a r t i a l  cycles 

i s  a large f r ac t ion  of the  t o t a l  when a pump tank has passed through the 

permitted number of cycles. I n  t h i s  case, addi t ional  thermal s t r e s s  

calculat ions should be made t o  determine the proper e f f ec t  of the p a r t i a l  

cycles. 

Although the  strain-cycle data indicate  tha t  t h e  coolant pump i s  

acceptable f o r  the  specified number of s t r a i n  cycles, the  stress in t ens i ty  

i s  uncomfortably high. These s t r e s ses  can be reduced by lowering the  

thermal gradient on the  spherical  s h e l l  by using a reduced thickness of 

insulat ion on the upper surface of the pump tank. Since nuclear heating 

i s  not involved i n  the  coolant pump, the proper amount of insulat ion can 

best  be determined on the  Fuel Pump Prototype Test Fac i l i ty ,  which i s  

present ly  under construction. 
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Conclusions J 

be satis- The strain-cycle analysis  indicates  that  the  fue, pump w i  

factory f o r  the  intended l i f e  of 100 heating cycles and 500 power-change 

cycles i f  it i s  a i r  cooled. No special  cooling will be required f o r  the  

coolant pump. A conservative design i s  provided by the  use of standard 

safety fac tors  i n  the s t ra in-fat igue data and i n  the usage fac tor .  Ad- 

d i t iona l  conservatism of an whom magnitude i s  provided by the  assump- 

t i o n  of t o t a l  s t r e s s  re laxat ion a t  each operating condition and by the 

f a c t  t h a t  the ac tua l  maximum s t r a i n  should be less than the  calculated 

maximum s t r a in .  

I n  addition t o  the  safety fac tors  outlined above, the  f u e l  and cool- 

ant pwnp tanks are  capable of exceeding t h e i r  required service l i f e  by 

f ac to r s  of 2.2 and 1.4, respectively, before the maximum permissible usage 

f ac to r  i s  exceeded. 
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APPENDIX A 

Distr ibut ion of Fission-Product-Gas Beta Enernv 

The t o t a l  energy tha t  w i l l  be released i n  the f u e l  pump tank by the  

fission-product gases has been reported" by Nestor t o  be 15 kw. 
energy w i l l  not be uniformly deposited on the  surface area exposed t o  

gas, however, so it w a s  necessary t o  determine i t s  d i s t r ibu t ion  over the 

surfaces of the  pump tank. The pump tank w a s  assumed t o  be of s t ra ight  

cy l indr ica l  geometry, as shown i n  Fig. A . l ,  and the  d i s t r ibu t ion  of the 

energy f lux  a t  the  cy l indr ica l  w a l l s  w a s  calculated as outlined i n  the  

following sections.  The d is t r ibu t ion  of energy t o  the  upper surface was  

approximated by assuming a d i s t r ibu t ion  s imilar  t o  t h a t  f o r  the outside 

w a l l .  

This 

Energy Flux at  Pwnp Tank Outer Surface 

It w a s  assumed that there  w a s  no self-shielding or shi'elding from 

the  volute support cylinder, and the l i n e  source (dy,dx) w a s  integrated 

over t he  enclosed volume (see Fig. A.2)11 t o  obtain the energy f lux  4 
a t  Pl: 

dy dx a sec2 8 de 

4 7 0  0 0 a2 sec2 e 

- "1 2 2 -1/2 + - [Jyl J dy dx de ( X  + y ) 
4 T O  0 0 
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where 

2 112 

-1 2 2 -112 

-1 2 2 -112 

x1 = f ( 2yR0 - y ) 

= tan hl(x + y ) , 

8 = t an  h2(x + y ) , 

7 

2 

S = energy source per uni t  volume . v 

Energy Flux a t  the  Volute Support Cylinder Outer Surface 

Figure A . 3  and t h e  following equation were used f o r  determining the  
energy f lux  a t  the  outer surface, P2, of the volute support cylinder: 

where 

Y1 = Ro -R1 7 

8 1 = t an  hl(x + y ) , 

2 112 

-1 2 2 4 2  

-1 2 2 -112 

x = f [R: - (y  - Rl) ] , 1 

8 = tan h2(x + y ) 2 

Energy Flux a t  the  Volute Support Cylinder Inner Surface 

The energy f l u x  a t  P3, as shown on Fig. A.3, w a s  approximted by 

calculat ing the  f l u x  a t  P$ using equation A.2 and the  appropriate values 

of R1 and R . 
0 

v i s ib l e  t o  P 3 

This value w a s  then corrected for the  addi t ional  volume 

by the  d i r ec t  cross-section a rea  r a t i o  and the  inverse 
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- 

square ratio of the center-of-gravity distance: 

I I 

TORISPHERICAL SHELL. INSIDE 

$(at P3) = 1.26 $(at P;) . 
The values of $ at P1, P2, and P; were evaluated as functions of hl 

and h 
tribution is shown in Fig. A.4. 

by the Numerical Analysis Section of ORGDP. The beta-energy dis- 2 
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Fig. A.3. Diagram for Determining Energy Flux at Outer and Inner 
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APPENDIX B 

Estimation of Outer Surface TemDeratures and 
Heat Transfer Coefficients 

I 
1 

The GHT Code f o r  calculating the complete temperature d is t r ibu t ion  

of the pump tank could not consider the e f f e c t s  of t he  flowing a i r  stream 

on the temperature d is t r ibu t ion  of t he  pump tank because of t he  tempera- 

t u re  rise of the cooling a i r  along the pump tank surface. I n  order t o  

obtain the  temperature dis t r ibut ion,  it w a s  necessary t o  couple the pump 

tank surface with the  surroundings by use of an effect ive heat t r ans fe r  

coeff ic ient  (h  ) and the ambient temperature. It w a s  impractical t o  

obtain an effect ive coeff ic ient  a t  each point along t h e  surface, and 

therefore the value of h w a s  calculated a t  the  cylinder-to-shell  junc- 

t ion ,  where the  thermal stress problem w a s  most severe, and then applied 

over the e n t i r e  upper surface of the pump tank. 

ce 

ce 

The air-cooled upper portion of the f u e l  pump tank i s  shown sche- 

matically i n  Fig. B.l. The pump tank i s  subject t o  thermal radiation 

and convection heating from the f u e l  salt, fission-product beta  heating, 

and gamma-radiation in t e rna l  heating. This heat i s  conducted t o  the 
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Fig. B.l. Schematic Diagram of Cooling-Air Shroud and Pump Tank 
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pump tank surface where it i s  t ransferred t o  the cooling air  by two paths: 

(1) d i rec t  forced convection t o  the cooling air  and ( 2 )  radiat ion t o  the 

cooling shroud and forced convection t o  the  same cooling a i r .  

a l so  conducted p a r a l l e l  t o  the  pump tank surface, but t h i s  heat t r ans fe r  

i s  assumed t o  be zero i n  estimating the surface temperature and heat 

t r ans fe r  coeff ic ients .  

Heat i s  

The temperature d i s t r ibu t ion  through the pump tank w a l l  can be calcu- 

lated12 as outlined below, assuming a constant gamma heat-generation r a t e  

through the w a l l  

d20 s, 

de 
- - -  

ax  k q y x + c  1 ’  
- -  

de 
c = - - + -  

dx k 

A t  t he  i n t e r i o r  w a l l ,  where x = 0, 

so 

dx k 

and therefore  

V 
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W and f o r  any place within the  w a l l ,  that  is, x # 0, 

The temperature i s  then 

A t  the i n t e r i o r  w a l l  x = 0, and therefore 

e = c  = e  2 2  

and 

If the  heat t r ans fe r  f romthe  outer surface i s  expressed by an ef-  

f ec t ive  coef f ic ien t  w i t h  respect t o  the  ambient temperature rather than 

the ac tua l  forced-convection cooling system temperature, the outer  sur- 

face temperature can be calculated as follows from Eq. (B.6)  w i t h  x = t:  

where 

I 
' Y  
i 
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and 

gt 9 t -  e3 - t 2  + - 
k 

gt = 

g t = h  8 - h  8 ce 3 ce 4e ' 

(B. lO) 

(B. 11) 

where 8 i s  the effect ive ambient temperature, and 4e 

gt = hfel - hfQ2 + QYt + qp (B.12) 

Solving Eqs. (B.10), ( B . l l ) J  and (B.12) simultaneously for 8 yields  the 

following equation : 
3 

hcehft + hcek 

hcehft + k(hce + hf )  + 

- 
e3 - 

k 
hfk 

+ hcehft + k(hce + hf )  qP + 
+ 

hcehft + k(hce + hf)  

9/ . (B.13) 
t ( h f t  + 2k) - + 

hcehft + k(h,, + hf )  2 

Solving Eq. (B.13) f o r  hce and rearranging the terms gives 

q 
hfk(O1 - 6,) + kgs + t ( h f t  + 2k) 

3 
(B.14) 
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V 

v 

The d i f f i c u l t y  i n  calculat ing the  outer surface temperature (0,) 

from Eq. (B.13)  r e s u l t s  from the f a c t  tha t  the  heat t r ans fe r  coef f ic ien ts  

hce and h a re  highly temperature dependent, and e3 must be known before f 
accurate coef f ic ien ts  can be calculated.  

ac to r  operating conditions, it i s  evident from the  preceding equations 

t h a t  t he  select ion of an a rb i t r a ry  value of e3 w i l l  r e s u l t  i n  a par t icu lar  

value of the  t o t a l  heat t r ans fe r  across the outer  surface, and a par t icu-  

lar  value of h 

surroundings. 

small f o r  the cases of i n t e re s t ,  €J 3 
the in t e rna l  surface heat t r ans fe r  coef f ic ien t  (h ), and the  value of 

can then be calculated by Eq. (B.14). 

However, f o r  a given s e t  of re -  

i s  required t o  d iss ipa te  t h i s  quantity of heat t o  the  

Since the  temperature drop across the  pump tank w a l l  i s  
ce 

can be used to compute the  value of 

f 

e 
The following procedure was  used t o  estimate the  e f fec t ive  outer 

surface heat t r ans fe r  coef f ic ien ts  for various cooling-air  flow ra tes :  

1. Values of h versus inner surface temperature ( 0  ) were calcu- 
f 2 

lated by Eq. (B.15),  below, and p lo t ted  on Fig. B.2:I3 

4 4  u F F (0, - 0,) r e a  
i- 1.5 - 

- 02 hf - (B. 15) 

2. The t o t a l  heat t ransferred (%) w a s  calculated versus the  outer 

surface temperature ( 6  ) by Eq. (B.16), below, a f t e r  f i rs t  calculat ing 3 

UNCLASSIFIED 
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Fig. B.2. Pump Tank Inner Surface Heat Transfer Coefficient Versus 
Outer Surface Temperature. 
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by Eq. (B.14): hce 

gt = hce(03 - e4e) ' (B.16) 

3. The forced convection heat t ransfer  coeff ic ients  f o r  the pump 

tank outer surface and the cooling shroud were calculated as a function 

of air  flow by Eq. (B.17) and plotted on Fig. B.3:14 

k 0.4 hc = 0.0225 (Pr )  (Re)'" . 
Q 

(B. 17) 

4 .  The heat transferred t o  the cooling shroud by thermal radiat ion 

was calculated versus shroud temperature f o r  each of several values of 

O3 and plot ted on Fig. B.3. 

plus the heat t ransferred d i r ec t ly  t o  the cooling air (q  

the t o t a l  heat transferred (%), and the heat t ransferred from the shroud 

A t  equilibrium conditions, the heat radiated t o  the shroud (q3 4 )  
) must equal 3-5 
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L t o  t he  cooling a i r  (q 

shroud from the pump tank. 

heat t ransfer red  t o  t h e  shroud i s  calculated versus cooling air flow 

r a t e  from the  expression 

) must be equal t o  the  heat t ransferred t o  the  4-5 
Therefore, f o r  each assumed value of G3, the  

where 

and 

= hc(B3 - e5) . q3-5 

The pa r t i cu la r  shroud temperature required t o  accept t h e  heat (q3 - 4)  
The heat t r ans fe r -  from the pump tank surface i s  obtained from Fig. B.3.  

red from the shroud t o  the  cooling a i r  i s  then calculated: 

and q4-5 a re  p lo t ted  versus cooling-air  flow For each value of 8 

r a t e  as shown on Fig. B.4, and the  in te rsec t ion  of the  two curves de te r -  

mines the cooling-air  flow rate t h a t  w i l l  produce the par t icu lar  value 

of e3. versus cooling-air  flow r a t e  can then be made as 

i n  Fig.  B.5, and the ef fec t ive  surface heat t r ans fe r  coef f ic ien ts  h ce 
f o r  use i n  the GIfl7 Code can be calculated f o r  any air  flow r a t e  using 

Eq. (B.14) .  

3’ q3 -4, 

A p lo t  of 8 3 
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APPENDIX C 

1 .  

Derivation of Boundary and Compatibility Equations 
f o r  Thermal S t ress  Calculations 

The procedures f o r  calculat ing thermal s t resses  i n  cylinders and 

cones are f u l l y  described i n  r e f s .  6 through 9. 

the  pump tank s t ructure  and the  sign convention used i n  the  stress 

analysis  are shown i n  Fig. C . l .  The cone-to-cylinder jo in t  i s  assumed 

t o  be r ig id .  

each of t he  th ree  members by solving 12 simultaneous equations describing 

the boundary conditions of the s t ructure  and the compatibil i ty conditions 

which i n t e r r e l a t e  the  three members a t  t h e i r  junction. 

t i o n  functions for cylinders a re  tabulated i n  ref. 8 only for posi t ive 

values of L, the  cone-to-cylinder junction i s  made t h e  or ig in  and the 

cylinder axis i s  assumed t o  be posi t ive i n  e i t h e r  direct ion.  

The general  layout of 

It i s  necessary t o  evaluate four integrat ion constants for 

Since the  posi- 

T h i s  
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t u re .  
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assumption requires that the  slope and the shear force equations be modi- 

f i ed  by a sign change t o  compensate f o r  the reversed sign on one of the 

cylinders. 

Derivations of the 12 simultaneous equations from the specif ic  

boundary or compatibility conditions are  given below. The basic equa- 

t ions  f o r  moment, displacement, slope, and shear force were obtained from 

re f .  6 f o r  the cylinders and r e f .  8 f o r  the cone. The conical s h e l l  equa- 

t ions  d i f f e r  somewhat from those presented i n  r e f .  8 because a prelimi- 

nary version of the report w a s  used tha t  did not include the e f f ec t s  of 

a thermal gradient through the  w a l l .  All the  terms considering the  e f -  

f e c t s  of in te rna l  pressure and mechanical loading were omitted from both 

the  cyl indrical  and conical she l l  equations. 

The following material constants, geometric constants, posit ion con- 

stants,  and auxiliary functions are  used i n  the boundary and compatibility 

equations: 

6 E = 26.3 X 10 , 

a = 7.81 x , 

p = 0.3 , 

t = 0.75 , 

6 = 1.016 X 10 , E t 3  D =  
12(1 - p") 

J 

9 
4mb5 

Y =  
d4 + 4 
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L 4 F 1 = d  + 4 ,  

F2 = F1 e dY 

It w a s  necessary t o  adjust  t he  pump tank configuration s l i g h t l y  so 
that the boundaries of the separate members would coincide with tabulated 

values f o r  the cone and cylinders:  

’ - 1 . 3 4 9  , pc = 3.3045 - - 2 
t C  

pc = 1.1598 , 

t = 0.5 , 
C 

4 = 78.5 deg , 

cot 4 = 0.2035 , 

xc = , 

= 2 @ , c l  = 6.254% , 
x C l  

= 2pcdYc2 = 9.844 , xc2 

a = 7.125 in .  , i 

I Ycl = - = 7.271 , 
s i n  4 

= 18.0 in .  . 5 2  
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The values of Xcl and Xc2 were adjusted t o  the  nearest  values tabulated 

i n  ref. 9: 

Xcl = 6.30 , 

y c l  = (zp = 7.376 , 

xc2 = 9.90 . 
The cylinder mean radius "art w a s  then corrected: 

a = Y s i n  4 = 7.228 , cl 

1*6523 = 0.30479 , 2 1.6523 - - 5 = at  7.228 x 0.75 

@ = 0.55207 , 

= BLai = 3.588 , 'ai 

= @\i = 4.416 , Ybi 

= 6.5 in .  , Lai 

i j i  = 8.0 i n .  . 
The values of yai and y 

i n  ref.  7. 
were adjusted t o  the  nearest  tabulated values b i  

= 3.6 , 'a 

La = 6.521 , 

Yb = 4.4 , 

43 = 7.970 . 
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The following cylinder posi t ion functions were taken from r e f .  7: 

Function 
~~ 

M1 
M2 
M3 

M4 

Ql 

&2 

Q3 

&4 

N1 

N2 

N3 

N4 

wi 
w; 
w; wc: 

Volute, 
ya = 3.6 

0.049 

-0.02418 

-65.64 

32.39 

0.07319 

0.02482 

33.25 

-98.03 

-0.01209 

-0.02450 

-16.19 

-32.82 

-0.01241 

0.03659 

-49 02 

-16.62 

Junction, 
Y a b = O  

-2.0 

0 

+2.0 

0 

-2.0 

-2.0 

-2.0 

+2.0 

0 
+1.0 
0 
+1.0 

1.0 
-1.0 
1.0 

1.0 

Top Flange, 
yb = 4.4 

0.007546 

-0,. 02337 

-50.065 

155.02 

0.03091 

-0.01582 

-104.95 

-205.08 

-0.01168 

-0.00377 

-77.51 

-25.03 

0.00791 

0.01546 

-102.54 

52.48 

The following cone posi t ion functions were taken from r e f .  9: 

Junction, Cone Outer Surface, 
Function Xcl = 6.3 xc2 = 9.9 

M 3.3798 

M -1.0712 

M -0.000601 

Y l  

Y2 

Y 3  
M 

Y 4  
-0.0013052 

Q c l  -0.45082 

1.0224 &c2 

Qc3 

Qc4 

-0.0004356 

-0.00014553 

4.4317 

-2.2413 

0.000010179 
-0.000003558 
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Junction, Cone Outer Surface, 
Function Xcl  = 6.3 xc2 = 9.9 

Wdl 
Wd2 

w;3 

Wd4 

(vc - Well 
(vc - W c l 2  

(vc - wc l 3  
(vc - wc)4 

K1 

K2 

K3 

K4 

p1 

p2  

p3 

p4 

10.1451 

4.47331 

-0.001444 

0.004322 

-13.313 

-27,449 

-0.01553 

0.0051 

0.10078 

0.007l098 

2.2948 

1.9948 

9.9225 

19.845 

147.684 

19.691 

-54.918 

-108.588 

-0.00008719 

-0.0002494 

0.04081 

0.0011659 

3.1988 

2 .  $988 

24.5025 

49.005 

900.559 

120.074 

J 

The cone auxi l iary temperature functions were obtained from the 

following expressions: 

J 1 = -(EtcQ: cot 4 )  Tcl  = -20.9Tcl , 

E t c a  co t  4 72Tc5 
J2 - - 4 (r - Tc3) = 459.95Tc5 - 11.555Tc3 , 

@C 

-2Etca cot 4 
J3 - 6 *c4 

@C 

- = -17.183Tc4 , 

-3Etca cot 4 
J =  Tc5  = -19.165Tc5 . 4 
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The temperature d is t r ibu t ions  for the  cylinders and cone were ex- 

pressed i n  the  following forms: 

Cylinder "A" 

8 a = T  a1 + T  a2 x + T  B 
a3 tr B + T a 4 ( g 7  . 

Cylinder "B" 

T c l  
+ Tc2 c3 c ec = - + T Y + Tc4yc 2 + Tc5Yc 3 * 

Yn 
L 

A t  the  pump volute (ya = 3.6) '  the  

- -  - o = -  dwa 

dL E t  

slope of cylinder "A" = 0, and 

E t a  c c  w ' = -  

CnaWA = 279.04(Ta2 + 13.04 

I' A t  t he  pump volute (ya = 3.6)' the  radial displacement of "A" = a 
and 
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and therefore 

CnaNn = 0 . (c.2) 

A t  the cone-cylinder junction, the sumation of moments = 0, tha t  is, 

M a - M , , + M c = O ,  

and 

+ 2DaaTb3 + D b  y e -dy + CncMp + J1K2 + 

+ 1.35 + 2.35 P + 2.2J4P3 = 0 , 2 3 1  

1 1 
- c C  M -- C C M + C C M  = 

2 na n 4ap2 nb n nc Yn 4aB 

2Dm(Ta3 - Tb3) - J K + 1.3J2 + 2.35 P + 1 2  3 1  

2 -ay + 2.2J4P3 - D b  y e 

114.7(Ta3 - Tb3) - 0.00711J1 - 1.3J2 - 

. (c .3)  - 122.82J3 - 324.9J4 - 229.41Tb5 b2 F 
1 
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a 

W A t  the  cone-cylinder junction, the summation of horizontal  and ve r t i ca l  

forces  = 0, and therefore,  f o r  the v e r t i c a l  forces, 

s i n  4 + Ne cos 4 = 0 

o r  

cos 4 
Qc = -% 

For the  horizontal  forces, 

Qc cos 4 + Ne s i n  4 = 

( 6Pfpm) 2 
cos 4 + N s i n  4 = N~ s in  4 - c 

For the  summation of horizontal  forces on both the cylinders and the 

cone, 

Qa + &b - Ne 

and 

1 
4aB na n 4aB C Q + 6DaaTa4 + - 1 E cnbQn + 

x (-E C ne Q ne + 8J4Pl + 

6.2094(79.38J4 + 3.0J3) - 

- 344.12(Ta4 + Tb4) + 229.41Tb5 F D . (c.4) 
1 
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A t  the  junction, the slope of Cylinder "A" = - slope of Cylinder "B," 
and 

dw b dw 
- -  - - -  a 

= - s c C  W ' + m T b 2 - b y e  -dY 
E t  na n E t  nb n 

, E t  -dY 
na n + Tb2) -2  by e 

b CnaWA + C W' = 279.04(Ta2 + Tb2) - 1116.2Tb5 F . (C.5) 
1 nb n 

A t  t he  junction, t he  slope of Cylinder "A" = slope of the  Cone 'IC,'' and 

d L  dYc 

(J3 + ~ 4 P 1 )  , W /  - J K  + J P  + -  1 2p3 

3 n c n c  11  2 1  

2 
a@ 

t C 

Bc 2 - C C  na W ' - r t a n  n 4 c c  nc w' nc = 

(J3 + ~ 4 P 1 )  9 1 
2 

- aB c W' - -  % tan 2 4 C W /  = 1484.65Ta2 + nc nc 
t C  

na n t 

+ 64.983(9.9225J2 - lO.lOlJ, + 98.456J3 + 976.93J4) (C-6) 

J 

W 
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b 

L A t  the  junction, the  displacement of Cylinder "A" = the  displacement of 

Cylinder "B," tha t  is, 

and 

? 
-dY 

5 E t  c ~ ~ N ~  - mal = & c nb N n - mbl - 7 e 

2 C na N n - C nb N n = Eta(Tal - Tbl) - - a y e-dy ? 
E t  

(c.7) 
Tb 5 CnbNn = 154.05(Tal - Tbl) - 616.21 - CnaNn - . 
F1 

A t  the junction, t he  displacement of Cylinder "A" = the displacement of 

the  Cone, and 

w = u cos 4 - V  s i n  4 , a 

c w' - " C C  E t  na N n - m a l = c o s $  nc n 

2 =3 - J K + J1 log, p, + (3J2 + 2J3P1 + J4P3) - + Cgcl  - 
9 1 3  

2 Cncvnc - JlK3 + J1 loge pc + 

- a s i n  4 (Tcl + Tc2Yc + Tc3Yc 2 + Tc4y,' + Tc5yc) 4 7 
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sin2 4 E cnc(vnc - w ) = a 
- t CnaNn + tc cos 4 nc 

sin2 ’ (13.65 P + 2.1J3)P1 - 4 1  Eaal - tc cos 4 

- m s in  4 ( T ~ ~  + T Y + T Y 2 + T ~ ~ Y ~  3 + T ~ ~ Y ~ )  4 
c2 c c3 c 

4 
c5 c + ... + T Y ) = s i n  4 = E r n a l  , E;a s i n  4 (Tcl + Tc2Yc 

theref ore 

a 
t nc 

sin2 4 -7 
and 

2 a s i n  4 
- t E CnaNn + tc cos 4 cnc(vnc - w  nc 1 = 

(13.6J4P1 + 2.1J3)P1 , 

-12895.8J4 - 200.68J3 . 
A t  the outer surface of the cone,, the slope = 0, and 

n n 

- -  - C W’ - K J + PlJ2 + nc nc 1 1 

2P, 1 + - 3 (J3 + P1J49 = 0 , 
3 
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W C W’ = 0.0408J1 - 24.503J2 - 600.37J3 - 14710.6J4 . (C.9) nc nc 

A t  the  cone outer  surface, the meridional membrane force = 0, and 

= 8P J + 3J3 = 196.02J4 + 3J3 . CncQnc 1 4  

A t  the  top  flange, the slope of Cylinder “B” = 0, and 

(c .lo> 

C W’ = 279.04(T%2 + 15.94Tb3 + 190.56Tb4) - 
nb n 

. (c.11) b - 1116.2Tb5 F 
2 

A t  the  top flange, the displacement of Cylinder ”B” = -6 and I’ 

w = “ C C  N 
b E t  nb n 

+ T  b4 (.)‘]-Ye B 

9 
-dY - -dY “ C C  N = y e  

E t  nb n mb5 e 
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4 - F1 
CnbNn = 154.05Tb5 

F2 
(C  .12) 

The f i n a l  forms of these 12 equations are arranged so that  the l e f t  

hand side containing the unknown integrat ion constants i s  dependent only 

on the  specif ic  pump tank configuration, while the  r igh t  side containing 

the temperature d i s t r ibu t ion  terms w i l l  vary f o r  each operating condition. 

The matrix of integrat ion constant coef f ic ien ts  f o r  the 12  equations i s  

shown i n  Table C .1. 
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Table C .l. Simultaneous Equation Matrix 

~ ~~~~~ 

Coefficients of Unknown Integrat ion Constants Cna, Crib, and Cnc 
E quat ion 

Nwnbe r 
l a  2a ‘3a ‘4-a c2b c3b c413 c l c  c2c c3c c4c 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

-0.01241 

-0.01209 

-0.22696 

-0.1253 

1.0 

5.3205 

0 

0 

0 

0 
0 
0 

-0.03659 

-0.0245 

0 

-0.1253 

-1.0 

-5 3205 

1.0 

9.637 

0 

0 

0 

0 

-49.02 

-16.19 

0.22696 

-0.1253 

1.0 

5.3205 

0 

0 

0 

0 
0 
0 

-16.62 

-32.82 

0 

0.1253 

1.0 

5.3205 

1.0 

9.637 

0 

0 

0 

0 

0 

0 

0.22696 

-0.1253 

1.0 

0 

0 

0 

0 

0 

7.91 x 

-1.168 x 

0 0 
0 0 

0 -0.22696 

-0.1253 0.1253 

-1.0 1.0 

0 0 
-1.0 0 
0 0 
0 0 
0 0 

1.546 X -102.54 

-3.77 x -77.51 

0 

0 

0 

0.1253 

1.0 

0 

-1.0 

0 

0 

0 

52.48 

-25.03 

0 

0 

3.3798 

-2.7993 

0 

-919.2 

0 

128.212 

-54.918 

4.4317 

0 

0 

0 

0 

-1.0712 

6.3485 

0 

-290.69 

0 

-264.36 

-108,588 
-2.2413 

0 
0 

0 

0 

-6.01 x 
-2.705 X 

0 

0.009384 

U 

-0.14957 

-8.719 x 10-5 
1.018 x 

0 

0 

0 
0 

-1.3052 X 

-9.03 x 

0 
-0.28086 

0 

4.912 x 
-2494 x 

-3.558 x 
0 
0 
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APPENDIX D 

Explanation of Procedure Used t o  Evaluate the Effects of 
Cyclic Strains i n  the MSRE Pumps 

J. M. Corm 

A n  essent ia l  difference i n  s t ructural  design f o r  high-temperature 

operation as compared with design fo r  more modest conditions i s  the need 

t o  consider creep and relaxation of the s t ructural  material. 

methods and procedures presently specified as  a s t ructural  design basis 

i n  the ASME Boiler and Pressure Vessel Code, Unfired Pressure Vessels, 

Section V I I I ,  and i n  the preliminary design basis developed by the Navy3 

become meaningless a t  high temperatures. 

must be formulated when high-temperature conditions are considered. The 

operating program of any component must be examined, and the design basis 

selected must be used t o  determine whether the number of operational cycles 

which can be safely tolerated exceeds the number of the cycles which i s  

desired during the l i f e  of the component. I f  necessary, the number of 

operational cycles of the component must be limited t o  the value which 

can be safely tolerated.  A s  may be seen, the de ta i l s  of the operating 

program are  extremely important and must be selected w i t h  considerable 

care. 

Many of the 

Thus a revised design basis  

The concept of s t ress  i s  used here as a convenience i n  discussing 
the e f fec ts  of cyclic s t ra ins  because it i s  the principal variable i n  

conventional problems of e l a s t i c i ty .  Properly, however, the discussion 

should be i n  terms of s t ra ins  when dealing with high temperatures and, 

especially, i n  describing thermal e f fec ts  i n  structures. With these 

factors  i n  mind, four general types of s t resses  were considered i n  es- 

tablishing a design basis f o r  the MSRE pumps which w i l l  operate at  tem- 

peratures within the creep and relaxation range; these are primary, 

secondary, loca l  o r  peak, and thermal. The primary s t resses  are d i rec t  

or  shear stresses,  developed by the imposed loading, which a re  necessary 

t o  sa t i s fy  only the simple laws of equilibrium of external and internal  

forces and moments. When primary s t resses  exceed the yield strength of 
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L the  material, , yielding w i l l  continue u n t i l  the  member breaks, unless 

s t r a i n  hardening or red is t r ibu t ion  of s t r e s ses  l i m i t s  the  deformation. 

Secondary s t r e s ses  a re  d i r ec t  or shear stresses developed by the con- 

s t r a i n t  of adjacent p a r t s  or by self-constraint  of the s t ructure .  

ondary s t r e s ses  d i f f e r  from primary s t r e s ses  i n  tha t  yielding of the m a -  

t e r i a l  results i n  re laxat ion of the  s t resses .  Local or peak s t resses  

a re  the highest s t resses  i n  the region being studied. They do not cause 

even noticeable minor d i s to r t ions  and are  objectionable only as a pos- 

s i b l e  source of fa t igue  cracks. Thermal s t r e s ses  a re  in t e rna l  s t resses  

produced by constraint  of thermal expansion. T h e m 1  s t r e s ses  which in -  

volve no general d i s to r t ion  were considered t o  be l o c a l  s t resses .  Thermal 

s t r e s ses  which cause gross d is tor t ion ,  such as those resu l t ing  from the  

temperature difference between she l l s  a t  a junction, were considered t o  

be secondary s t resses .  

Sec- 

I n  the present examination, four sources of s t resses  were considered. 

Pressure differences across the shells w i l l  produce membrane pressure 

stresses. These s t resses  a re  primary membrane s t resses .  The pressure 

differences w i l l  a l so  produce discont inui ty  s t resses ,  which a re  secondary 

bending s t resses .  Temperature gradients along the  she l l s  w i l l  produce 

s t r e s ses  which are  due both t o  the  temperature var ia t ions  and t o  the  d i f -  

ferential-expansion-induced d iscont inui t ies  a t  t he  s h e l l  junctions. These 

s t r e s ses  are secondary bending stresses. Temperature gradients across 

the w a l l s  of the she l l s  will produce thermal s t r e s ses  which are assumed 

t o  be l o c a l  stresses. 

The ASME Code i s  generally accepted as the bas i s  f o r  evaluating p r i -  

mary membrane stresses, and the  allowable s t resses  for INOR-8 a t  the op- 

e ra t ing  temperatures of the  pumps were obtained from the c r i t e r i a  s e t  

f o r t h  i n  the  code, with one exception. 

w a s  applied t o  the  stress t o  produce a creep r a t e  of 0.1% i n  10 000 hr 
i n  order t o  avoid possible problems associated with t h e  e f f ec t  of i r r ad ia -  

t i o n  on the creep rate.* 

psi ,  and the  primary membrane s t r e s ses  were l imited t o  t h i s  value. The 

A reduction f ac to r  of two-thirds 

The maximum allowable s t r e s s  a t  1300°F i s  2750 

'v 

*Based on data from R.  W .  Swindeman, ORNL. 
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primary s t resses  were not considered fu r the r  except from the  standpoint 

of excessive deformations produced by primary plus secondary s t resses .  

I n  order t o  evaluate the e f f e c t s  of secondary and l o c a l  s t resses ,  

repe t i t ive  loading and temperature cycles must be considered because 

f rac tures  produced by these types of stress are  usually the  r e s u l t  of 

s t r a i n  fa t igue.  

or p l a s t i c  s t r a i n  range per cycle may be used f o r  studying cycl ic  condi- 

t ions.  The t o t a l  s t r a i n  range per cycle i s  defined as t h e  e l a s t i c  plus 

p l a s t i c  s t r a i n  range t o  which the  member i s  subjected during each cycle. 

The p l a s t i c  s t r a i n  range per cycle i s  the  p l a s t i c  component of the t o t a l  

s t r a i n  range per cycle. The strain-cycling information may be compared 

with the  calculated cycl ic  s t r a i n s  i n  the member .  Since most formulas 

express stress ra ther  than s t r a i n  as a function of loading o r  tempera- 

ture d is t r ibu t ion ,  assuming e l a s t i c  behavior of the  material, it i s  con- 

venient, as s ta ted before, t o  transform the tes t  data from the  form of 

s t r a i n  versus cycles-to-failure t o  the form of stress versus cycles-to- 

f a i l u r e  by multiplying the  s t r a i n  values by the e l a s t i c  modulus of the 

material .  The resu l t ing  values have the dimensions of stress but, since 

the t e s t s  were made i n  the  p l a s t i c  range, they do not represent ac tua l  

s t resses .  

Data which give the cycles-to-failure versus the t o t a l  

When the  analysis  of s t resses  i n  a member reveals  a b i a x i a l  or tri- 
axial  s t r e s s  condition, it i s  necessary t o  make some assumption regarding 

the f a i l u r e  c r i t e r ion  t o  be used. 

the s igni f icant  secondary and l o c a l  s t resses  l i e ,  there  i s  no experimental 

evidence t o  indicate  which theory of f a i l u r e  i s  most accurate. There- 

fore,  it has been recomended15 t h a t  the m a x i m u m  shear theory be used, 

since it i s  a l i t t l e  more conservative and results i n  simpler mathemati- 

c a l  expressions. The following s teps  used i n  developing the  procedure 

were taken from re f .  3: 

I n  the p l a s t i c  range, where most of 

1. Calculate t he  three pr inc ipa l  s t resses  (ul, u2, u3) a t  a given 

point. 

2. Determine the m a x i m u m  shear stress which i s  the l a rges t  of the 

three quant i t ies  

* 

J 
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o r  

3 .  Multiply the maximum shear s t r e s s  by two t o  give the "maximum 

in t ens i ty  of combined s t r e s s  ." 
4. Compare t h i s  quantity w i t h  the  E AE values obtained from uni- 

a x i a l  strain-cycling t e s t s .  

Stated more simply, t he  procedure i s  t o  use the  s t r e s s  i n t ens i ty  

representing the la rges t  algebraic difference between any two of the three 

pr inc ipa l  s t resses .  

The procedure outlined above f o r  evaluating the  e f f e c t s  of cycl ic  

loadings and cycl ic  thermal s t r a ins  w a s  used t o  examine the  cyc l ic  sec- 

ondary and loca l  s t resses  which will be produced i n  portions of the  MSRE 

pumps. 
however, the Navy Code w a s  developed primarily f o r  appl icat ions i n  which 

the  maximum temperatures would be below those necessary f o r  creep and r e -  

laxat ion of t h e  material. Thus, several  of the s teps  out l ined i n  the  

N a v y  Code were modified f o r  the present evaluation. 

The procedure i s  5ssent ia l ly  t h a t  specified by the  Navy Code; 

The assumption w a s  made t h a t  t he  temperatures were su f f i c i en t ly  high 

and t h a t  the times a t  these temperatures were su f f i c i en t ly  long f o r  com- 

p l e t e  stress relaxat ion t o  occur. Thus the s t r a ins  which the  e l a s t i c a l l y  

calculated stresses represented were taken as e n t i r e l y  p l a s t i c .  

basis, s t r a i n  cycling data i n  the  form of p l a s t i c  ra ther  than t o t a l  s t r a i n  

range per cycle versus cycles-to-failure were used. 

which give s t r a i n  fa t igue data f o r  INOR-8 a t  1200 and 1300°F, were ob- 

tained from a limited number of strain-cycling tes ts  performed by the  

ORNL Metallurgy Division. 

t i c  s t r a i n  range per cycle curves and represent a conservative estimate 

On t h i s  

Figures D . l  and D.2, 

The dashed curves were obtained from the  plas-  
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Fig. D.2. Strain Fatigue Curves for INOR-8 a t  1300°F. 
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w 

w 

of the t o t a l  s t r a i n  range per cycle. 

exhibi ts  perfect  p l a s t i c i t y  above the proportional l i m i t  (no s t r a in  

hardening), and the e l a s t i c  s t r a i n  at  the proportional l i m i t  was  added 

t o  the p l a s t i c  s t r a i n  range a t  each point,  

t o  obtain an estimate of the cycles-to-failure, assuming that no relaxa- 

t i o n  o r  strain-hardening occurs. 

dashed curves upward. 

It w a s  assumed tha t  the material  

The dashed curves were used 

Strain hardening would displace the 

Figures D . 3  and D.4, which give the s t r e s s  amplitude versus number 

of cycles f o r  INOR-8 a t  1200 and 1300°F w i t h  complete relaxation, were 

derived from the sol id  curves f o r  Figs. D . l  and D.2  by multiplying the 

p l a s t i c  s t r a i n  range by E t o  obtain a pseudo s t r e s s  range and then d i -  

viding by 2 t o  obtain the al ternat ing s t r e s s .  

D . 3  and D . 4  represent the  r e su l t s  of this operation. 

represent the allowable values of a l ternat ing s t r e s s  and were constructed 

by placing a fac tor  of safety of a t  l e a s t  10 on cycles and a fac tor  of 

safety of a t  l e a s t  1.5 based on s t r e s s .  The safety fac tor  of 10 on cycles 

i s  based on uncertainties i n  the calculations, s ca t t e r  of test data, s ize  

effects ,  surface f inish,  atmosphere, e t c .  These reduction fac tors  are  

l e s s  conservative than those specified by the Navy Code. 

have been used i n  high-temperature design for several years a t  ORNL, and 

the current feel ing of one of the or iginators  of the Navy Code i s  that 

the reduction fac tors  specified i n  tha t  document are  over-conservative 

and w i l l  be reduced t o  those used i n  t h i s  investigation.* Figures D . 5  

and D . 6  were obtained i n  the manner a s  Figs ,  D . 3  and D . 4  but were based 

on t o t a l  s t r a i n  ra ther  than p l a s t i c  s t ra in .  They represent allowable 

values of a l te rna t ing  s t r e s s  i f  no relaxation occurs. 

The dashed curves i n  Figs. 

The sol id  curves 

However, they 

The l i f e  of a component undergoing cycl ic  s t r a i n  depends on mean 

s t r a i n  as well  as cycl ic  s t r a in ;  however, f o r  most applications i n  which 

the loading i s  almost en t i r e ly  due t o  thermal cycling and no severe 

strain-concentrations ex is t ,  the e f f ec t  of mean s t r a i n  can be expected 

t o  be secondary t o  tha t  of cycl ic  s t r a in .  

l i f e  can be determined d i r ec t ly  from s t r a i n  range computations.16 

For these applications, cycl ic  

The 

*Personal communications between B. F. Langer of Westinghouse Elec t r ic  
Corp., Bet t i s  Plant, and B. L. Greenstreet, O m .  
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Fig. D.3 .  S t ress  Amplitude Versus Number of Cycles for INOR-8 a t  
1200°F w i t h  Complete S t ress  Relaxation. 
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Fig. D.4. Stress Amplitude Versus Number of Cycles for INOR-8 at 
1300°F with Complete Stress Relaxation. 



63 

UNCLASSIFIED 
ORNL-LR-DWG 64542 

10' 2 5 lo2 2 5 to3 2 5 lo4 2 5 lo5 2 5 lo6 
N ,  NUMBER OF CYCLES 

Fig. D . 5 .  Stress Amplitude Versus Number of Cycles for INOR-8 at 
1200°F with No Relaxation. 

UNCLASSIFIED 
ORNL-LR-DWG 64513 

Fig. D . 6 .  Stress Amplitude Versus Number of Cycles f o r  INOR-8 at 
1300°F with No Relaxation. 
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e f fec t  of mean s t r a i n  i s  fur ther  reduced when gross re laxat ion takes place 

during each cycle, as i s  expected i n  the  present case. 

pump s t r e s s  evaluation, the mean s t r a i n  w a s  assumed i n  a l l  cases t o  be 

zero, and the e f f ec t  of cycl ic  s t r e s ses  w a s  determined d i r e c t l y  from t h e  

p lo t s  of the allowable a l te rna t ing  stress versus the  number of cycles. 

Thus f o r  the MSRE 

Each of the  components examined will be subjected t o  several  opera- 

t i n g  conditions. 

l i m i t ,  the  s t ruc tu ra l  evaluation w a s  based on a f i n i t e  l i f e ,  and the 

damaging e f f ec t  of a l l  s ign i f icant  s t r a i n s  w a s  considered. 

Since s t r a ins  will occur t h a t  a r e  beyond the e l a s t i c  

Suppose, for example, that the s t r e s ses  produced by n d i f f e ren t  op- 

e ra t ing  conditions have been determined and t h a t  it has been found that 

these s t resses  w i l l  produce values of Salt which can be designated as 

Sl, S2, ... S . n 
l i f e  of t he  component, and S i s  repeated p times, e t c .  From Figs. D.3 2 2 
and D.4  it i s  found t h a t  N 

of the calculated s t resses .  

cycle r a t i o s  because they represent t he  f rac t ion  of the  t o t a l  l i f e  which 

i s  used a t  each s t r e s s  value. 

might be considered sa t i s fac tory  i f  

It i s  a l so  known that  S1 i s  repeated p1 times during the 

... N a re  the  allowable cycles f o r  each 1' N2' n 
The values pl/N1, p2/N2, ... pn/Nn are ca l led  

A s  a f i rs t  approximation, an appl icat ion 

i =n c - - <  pi 1.0 . 
N i  L 

i =1 

Fatigue t e s t s  have shown, however, t h a t  f a i l u r e  can occur a t  cumulative 

cycle r a t i o  summations d i f fe ren t  from unity.  

are applied f irst  and followed by the higher s t r e s s  values, the cycle 

r a t i o  sumnation a t  f a i l u r e  can be "coaxed" as high as 5. On the  other 

hand, i f  the most damaging s t resses  a re  a l l  applied f irst ,  f a i l u r e  can 

occur a t  cycle r a t i o  sumnations as low as 0.6, or even lower, 

extreme conditions and are  based on low-temperature fa t igue data which 

may or may not be representative of behavior under s t r a i n  cycling. 

random combinations, cycle-rat io  summations usually average-close t o  

unity. 

t ive  allowable l i m i t  . 

If the  lower s t r e s s  values 

These a re  

For 

Therefore, 0.8 w a s  used i n  t h e  present eva lwt ion  as a conserva- 

Y 
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b It should be noted t h a t  i n  cor rec t ly  applying any design c r i t e r i a ,  

a point-by-point analysis  must be made. 

h i s tory  for each s ingle  point must be examined. 

be taken, but they must necessarily lead t o  overly conservative r e su l t s .  

I n  summary, the  permissible cycles of each type were determined for 
the MSRE f u e l  and coolant pumps by combining the secondary and loca l  

s t resses  a t  each point.  

f o r  the "maximum in t ens i ty  of combined s t ress . "  

divided by 2 t o  obtain the a l te rna t ing  stress. The allowable number of 

cycles f o r  each a l te rna t ing  stress were obtained from Figs. D.3 or D.4, 
assuming complete re laxat ion,  The cycle r a t i o s  were then obtained that  

were based on the  expected number of times each stress will be repeated, 

and various combinations of the  cycle r a t i o s  were summed at a par t icu lar  

point and compared with the  0.8 l i m i t .  

l i f e  i f  no relaxat ion occurred, Figs. D.5  and D.6 were used i n  place of 

Figs.  D . 3  and D . 4 .  

That i s ,  the  complete operating 

Short cu ts  may sometimes 

Points were then found which gave m a x i m u m  values 

These l a t t e r  values were 

To invest igate  the  increase i n  
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NOENCLATURE 

r 

w 

a 

b 

5.' c2 

na C 

'nb 

nc C 

D = ~ t ~ / [ 1 2 ( 1  - p 2 ) I  

d = b/f3 

E 

F1 = (b/9)4 + 4 

F = F  e 2 1  

Fa' Fe 

hC 

hc e 

d Y  

hf 

Jn 

k 

Kn 

L 

Volute support cylinder mean radius 

Exponential constant i n  cylinder "B" tempera- 
ture equation 

Integrat ion constants 

Integrat ion constants f o r  cylinder "A" 
(n  = 1, 2, 3, 4 )  

Integrat ion constants f o r  cylinder "B" 
(n  = 1, ..., 4 )  

Integrat ion constants for cone (n = 1, ..., 4 )  

Flexural r i g i d i t y  of cylinder 

Dimensionless temperature parameter 

Modulus of e l a s t i c i t y  

Geometric constants for rad ia t ion  heat t r ans fe r  

Forced convection heat t r ans fe r  coef f ic ien t  

Effect ive heat t r ans fe r  coef f ic ien t  of pump 
tank outer surface 

Heat t r ans fe r  coeff ic ient  of p u p  tank inner 
surface 

Auxiliary temperature functions f o r  cone 
(n = 1, ..., 4 )  

Thermal conductivity of INOR-8 

A u x i l i a r y  s t r e s s  functions f o r  conical she l l s  
(n  = 1, ..., 4 )  

Axial cylinder posi t ion from cone-to-cylinder 
junction 

. 

M Bending moment 

c 
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Bending moment functions f o r  cylinder (n  = 1, ..., 4 )  Mn 

Bending moment functions fo r  meridional plane 
of cone (n = 1, ..., 4 )  

M 
yn 

Bending moment functions for circumferential  
plane of cone (n = 1, . . . , 4 )  Men 

Membrane force N 

'n 
Membrane force functions f o r  cylinder (n  = 1, ..., 4 )  

Membrane force functions f o r  circumferential  
plane of cone (n  = 1, . . ., 4 )  

Auxiliary s t r e s s  functions f o r  conical sh 
(n  = 1, ..., 4 )  

Prandtl  number 

Normal shear force 

Shear force functions f o r  cylinder (n  = 1 ..., 4 )  

tlls 
n P 

Pr  

Q 

Qn 

Shear force functions for cone (n = 1, ..., 4 )  
'nc 

gf 

gt 

% 

Heat t ransfer red  across inner pump tank surface 

Heat t ransfer red  across outer pump tank surface 

Heat input t o  inner  pump tank surface by f i s s ion -  
product-gas beta radiat ion 

In t e rna l  heat generation rate from gamma radia-  
t i o n  

Heat t ransferred from outer  pump tank surface 
t o  cooling shroud q3 -4 

Heat t ransfer red  from outer  pump tank surface 
t o  cooling a i r  q3-5 

Heat t ransferred from the  cooling shroud t o  the 
cooling air q4- 5 

Reynold s number R e  

Constants i n  cylinder "A" temperature equation 
(n  = 1, ..., 4 )  an T 
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Tbn 

t 

tC 

t 
g 

U 
C 

V 

'nc 
W 

X 

Constants in cylinder "B" temperature equation 
(n = 1, ..., 5 )  

Constants in cone temperature equation (n = 1, ..., 5 )  

Wall thickness of cylinder 

Wall thickness of cone 

Thickness of cooling air gap 

Displacement of cone perpendicular to surface 

Meridional displacement of cone 

Displacement functions for cone (n = 1, . . ., 4 )  

Radial displacement 

Displacement functions for cone (n = 1, ..., 4 )  

Slope functions for cylinder (n = 1, . , ., 4 )  

Slope functions for cone (n = 1, . . . , 4 )  

Distance through pump tank wall 

x = 28c+c 

Y = BL Dimensionless coordinate of cylinder 

Dimensionless coordinate of cone 

Meridional position on cone from apex 
C 
Y 

a Coefficient of thermal eqansion 

Characteristic length of cylinder 

4aaTb5 
Y ' 4  

d + 4  

e 

* Z  

Temperature 

Local temperature 
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dJ 

ci 

CT 
b 

m U 

c k  

U 8i '  00 cr 

Subscripts 

a 

b 

C 

4, 

0 

One half  of cone ver tex angle 

Poisson's r a t i o  

Bending s t r e s s  

Membrane stress 

Principal  meridional s t r e s ses  inside and out- 
side 

Principal circumferential s t r e s ses  inside and 
out side 

Stefan-Boltzman constant 

Cylinder "A" ( in t e rna l  volute support cylinder) 

Cylinder "B" (external volute support cylinder ) 

Cone ( subs t i t u t e  f o r  pump tank spherical  s h e l l  
i n  thermal s t r e s s  calculat ions)  

Meridional plane 

Circumferential plane 

1 

Y 
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