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ABSTRACT 

A number of conceivable reac t iv i ty  accidents were analyzed, using 
conservatively pessimistic assumptions and approximations, t o  permit 
evaluation of reactor safety. Most of the  calculations, which are 
described i n  de ta i l ,  were performed by a d i g i t a l  kinet ics  program, 
MJRGATROYD. Some analog analyses were also m a d e .  

None of the  accidents which were analyzed lead t o  catastrophic 
fa i lure  of the reactor, which i s  the  primary consideration. 

Some internal  damage t o  the  reactor f'rom undesirably high tea- 
peratures could result f'rm extreme cold-slug accidents, premature 
c r i t i c a l i t y  during f i l l i ng ,  or uncontrolled rod withdrawal. Each of 
these accidents could happen only by compounded failure of protective 
devices, and i n  each case there ex is t  means of effect ive corrective 
action independent of the primary protection, so t h a t  dimage i s  un- 
l ike ly .  

The calculated responm t o  a rb i t ra ry  ramp and s tep  additions of 
reac t iv i ty  show t h a t  deunaging pressures could occur only i f '  the  ad- 
d i t ion  i s  the equivaent  of a s tep of about l$ dk/k or  greater.  

. 

NOTICE 

This document contains information of a preliminary nature and was prepared 
primarily for internal use at the Oak Ridge National Laboratory. It i s  subject 
to  revision or correction and therefore does not represent a final report. The 
information i s  not to  be abstracted, reprinted or otherwise given public dis- 
semination without the approval of the ORNL patent branch, Legal and Infor- 
mation Control Department. 
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SAFETY CALCULATIONS FOR E R E  

P. N.  Haubenreich 
J. R. &gel 

INTRODUCTION 

The work reported here was done t o  provide information for  the sec- 

ond addendum t o  the  MSRE Preliminary Hazards Report,' and consists of the 

analysis of reactor behavior i n  cer ta in  potentially hazardous s i tuat ions.  

The purpose of the  present report i s  t o  describe the  procedures which were 

used and t o  give some results i n  f'uller de ta i l .  

Incidents which were analyzed included: fuel  pump fa i lure  a t  high 

power, "cold-slug" accidents, premature c r i t i c a l i t y  during core f i l l i ng ,  

Sreakage of a graphite stringer, passage of a concentrated fbe l  slug and 

runaway rod withdrawal. 

r a p  additions of reac t iv i ty  was a l so  computed. 

and r e su l t s  are  given i n  the  body of the report ,  

&&ions and some other pertinent information a re  given i n  appendixes. 

The response of the  system t o  a rb i t ra ry  s tep and 

Each case i s  described * 
Details of the  calcu- 

An analog computer was used t o  analyze the  fuel  pump stoppage. A l l  

other cases were analyzed using MURGATROYD, a machine program developed 

by fiestor* for  d ig i t a l  computation of MSRE kinetic behavior. 

recently shown tha t  MURGATROYD predicts larger  power excursions for  a 

given imposed reac t iv i ty  t ransient  than would be calculated i f  the  core 

mean temperatures were related more r e a l i s t i c a l l y  t o  i n l e t  temperature 
a d  power. 

new program which w i l l  incorporate temperature dis t r ibut ions and flux- 

weighted mean temperatures i s  being developed. When t h i s  i s  ready, some 

Nestor has 

(The same coment may apply t o  the  s w a t o r  resu l t s . )  A 

Molten S a l t  Reactor Experiment Preliminary Hazards Report, ORNL 
CF-61-2-46 Addendum No. 2 (May 8, 1962). 
The conditions and r e su l t s  reported here are fo r  the  "first round" of 
the analysis. 
ployment and some of t he  incidents were reanalyzed, by the procedures 
described here, i n  l i g h t  of t he  new conditions. 
calculations appear i n  reference 1. 

Kinetics of the  MSRE, ORNL-!T!M-203 (April 6, 1962). 

I 

ii 

Same changes were subsequently made i n  rod worth and de- 

The r e su l t s  of the latest .  

2C. W. Nestor, MURGATROYD, an IBM-7090 Program for  the Analysis of the  



of  the incidents described i n  t h i s  report  w i l l  be analyzed again, 

t he  standpoint of reactor safety evaluation, however, it i s  believed tha t  

the calculations which have already been done are  adequate for  the cases 

stuuied, par t icular ly  since the resu l t s  obtained indicated reasonably safe 

reactor operation. 

From 4 

4 
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MSRE CHARACTERISTICS 

P 

Quantit ies which are  important i n  the kinetic behavior of the MSRE 

are l i s t e d  i n  Table 1; the values shown were used i n  the kinetics ca1.c~- 

la t . ions.  

Table 1. MSRE Characteristics Affecting Kinetic Behavior 

Prompt -neutron 1 i f  e t  h e  

Delayed neutron fraction: s t a t i c  

: circulating 

Residence times: core 

external t o  core 

Cr i t ica l  mass: core 

t o t a l  fuel 

Mass coefficient of reac t iv i ty  (6k/k)/i6M/M) 

Temperature coefficients of reactivity:  fuel 

graphit e 

Fraction of heat generation: i n  fuel 
i n  graphite 

Core heat capacity: graphite 
fie1 

Graphite -t o-fbel heat t rans  f e r  

2.9 sc?c 

0.0064 
0.0034 

7.3 see 

17.3 sec 

16.6 kg U235 
56,o kg u 23.5 

0.28 

-5 -2.8 x i o  
-5 0 -1 -6.0 x 10 F 

0.94 
0.06 

3.53 IvIw-sec/*F 
1.47 I.llw/sec/% 

0.020 ~dw/'F 

Extremely rapid increases i n  core power cause a rise i n  core pressure 

due t o  i n e r t i a  and f r i c t ion  i n  the  l i n e  t o  the pump and due t o  compresslon 

of the gas i n  the pump bowl. 

surges a re  given i n  Table 2. 

The quant i t ies  affecting the core pressure 
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Table 2. MSRE Characteristics Affecting Core Pressure Transients 

Core volume 

Fuel density 

Fuel volumetric expansion coefficient 

Length of l i n e  t o  pump bowl 

Cross-sectional area of l i n e  

Friction loss i n  l i n e  

Volume of gas i n  pump bowl 

20 ,3 

1.26 x LO -4 OF'1 
149 lb / f t3  

16 ft 
0.139 ft2 

1.3 velocity heads 

2.5 f t 3  

RESULTS OF CREDIBLE REACTIVITY ACCIDmTS 

Six kinds of conceivable accidents or malfunctions involving un- 

desirable additions of reac t iv i ty  were analyzed. The sections which follolj 

describe each condition and the  results of the analysis. 

ys i s  are  covered i n  d e t a i l  i n  the Appendices. 

Methods of a n d -  

Case 1 - Fuel Pump Failure 

If the fie1 circulation i s  interrupted while the reactor i s  c r i t i c a l ,  

the  increase i n  the effect ive delayed neutron fraction will cause the  

c r i t i c a l  temperature t o  increase. 

by the radiator,  the temperature of the coolant salt w i l l  decrease hi- 

nediately following the cessation of f'uel flow through the heat exchanger. 

If appreciable power i s  being extracted 

The behavior of the  reactor pover and temperature i n  the event of a 

PJel pump stoppage with the  reactor operating a t  high power was explored 

by Burke on the Analog Faci l i ty  on February 1, 1962. 

Figure 1 shows simulator resu l t s  for the case of a f'uel pump power 

fa i lure  while the  reactor i s  a t  10 Mw, with no corrective action and the 

coolant pump continuing t o  run. 
i n  the core increased 120 F, the secondary salt temperatures decreased, 

rcaching the freezing point at  the radiator ou t le t  i n  less than two minutes. 

Although the mean temperature of the fuel  
0 

(The behavior at  lower i n i t i a l  powers was similar, but the secondary salt 
did not cool t o  the freezing point i f  the ini t ia l 'power extraction was l e s s  

than 7.5 M w . )  
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It i s  clear  t ha t  the  occurrence of a f'uel-pump power fa i lure  with the 

reactor at  high power requires tha t  steps t o  reduce the heat removal from 
the  radiator  be taken quickly. Control rod action t o  reduce reac t iv i ty  

i s  necessary t o  prevent an undesirably large r i s e  i n  f'uel temperature i n  

the core. 

and changes i n  heat removal by the radiator.  
Results were a l so  obtained considering control-rod movemeit 

Figure 2 shows the results of a simuLated fuel pump fa i lu re  a t  the 

same ini t ia l .  conditions as Fig. 1, but with corrective action. One second 

a r t e r  the p p  power w a s  cut (coast8own was simulated, s o  the f lu id  flo-& 
was not assumed t o  stop instantaneously), a negative reac t iv i ty  ramp was 

s tar ted t o  simulate insertion of the control rods. 

per second, corresponding t o  all three rods moving i n  a t  about 0.4 i;i./sec. 

(See page 46 for discussion of rod worth, speed and normal positions. ) 

Beginning 3 seconds a f t e r  the  pump power fai lure ,  t he  simuLated heat r e -  

moval from t h e  radiator  tubes was reduced as indicated by the  radiator  

i n l e t  and out le t  temperature i n  Fig. 2. It i s  believed tha t  the radiator  

doors can be closed t o  reduce heat extraction faster than tha t  associated 

with Fig. 2 conditions. 

very l i t t l e ,  and the fuel  mean temperature rose 30°F. 

radiator  control but w i t h  a fas te r  negative r eac t iv i ty  ramp of -O.l?$/sec, 

the  power dropped more rapidly and the  fuel  mean temperature rose only 

i8'F. 

This rate w a s  -0.0755 

i n  t h i s  case, the radiator  temperature dropped 

With the  same 

Case 2 - Cold Slug Accident 

Because the "cold-slug'' accident could not be adequately simulated 

on the analog computer, the consequences of several accidents of varying 

severity were estimated by c r i t i c a l i t y  and kinetics calculations on the 

IBM-7090. 
i n  the Appendix, page 48. ) 

30 ft3 of  fuel  a t  900, 1000, and llOO°F i n to  the core at  a rate of 

1.200 gpm. 

120OoF, with 10 kw of f i ss ion  power being generated, and with no circu- 

l a t ion  o f  fuel .  

the s t a r t  of circulation was t reated as a s tep change i n  reac t iv i ty  of' 

(Details of the procedures and intermediate r e su l t s  are given 

The accidents which were analyzed consisted of pumping 10, 20, and 

In each case the core was assumed t o  be i n i t i a l l y  c r i t i c a l  a t  

The loss of delayed neutron precursors which accompiznies 

r 

b 
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-0.30% 6k/k, which occurred simultaneously with the  entry of the f i r s t  

cold fuel  in to  the core. 

I n  the first cases which were calculated, no control rod action w a s  

taken. The calculated f iss ion powersfollowing the entry of the various 

cold slugs in to  the  core a re  shown i n  Fig. 3. The i n i t i a l  drop i n  each 

case w a s  due t o  the assumed s tep decrease i n  reac t iv i ty  which takes the 

reactor subcri t ical .  

denser fuel  was not enough t o  bring the reactor back t o  c r i t i c a l .  

of the other cases the reactor does become supercriticaJ. but before the 

power has r i sen  very high, hot fuel (at 1200'F) begins t o  enter the  ?ore 

behind the i n i t i a l  slug and the reactor becomes subcr i t ica l  again. (The 
core t r a n s i t  time i s  7.3 see. 

the 2O-f'b3 slug i n  14.6 see and the 30-ft3 slug i n  18.2 see.) 

20- and 30-f't3 slugs a t  900°F, considerable excess reac t iv i ty  was added 

quickly, causing power surges which were limited by the  heating of t i e  

core. 

e f fec t  on the react ivi ty .  ) 

In  the case of the llOO°F slugs, the  effect  of the  

Li sme 

The 10-n~ slug passes out i n  U,O see; 

For the  

(In the  other cases the f i ss ion  heating of the  core had negligible 

Figure 4 snows the calculated power, pressure and mean temperatxres 

i n  tine core for  the worst two cases, The kinetics calculations t reated 

the  fuel  and the graphite as separate regions a t  uniform temperature and 

pressure; actually, temperatures and fuel  pressures a t  the  center of the 

core would be above the mean values shown. However, the  difference be- 

tween the peak pressure and the mean w i l l  not exceed 2 or 3 psi, because 

the ine r t i a  of the fuel  i n  the fuel  channels i s  r e l a t ive ly  s m a l l .  Ap- 

pcximate calculations indicated tha t  the maximum fuel  temperature i n  the  

20-ft3, gOO°F case should not exceed about 1650'F. 

Two more cases were examined i n  which the power and temperature ex- 

cursions accompanying the 20-ft3, gOO°F slug were l imited by control rod 
action. 

when the period reached 3 see (equivalent t o  driving three rods i n  at  

0.4 in./sec). In the second case, -4.0$ 6k/k w a s  introduced i n  1 sec 

a f t e r  the  period had reached 2 see (equivalent t o  rods dropping). 

powers were 0.66 Mw and 0.7 kw i n  the  two cases and there  was  no s ignif-  

icant pressure or temperature increase. 

(See page 9.) 

In  the  first, a reac t iv i ty  ramp of -O.O75$ per sec was i n i t i a t e d  

Peak 

ur 

r 

c 

J 
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Case 3 - Fi l l ing  Accident 

. 

1 

W 

Cr i t i ca l i t y  could be reached prematurely during a s tar tup while the 

core i s  being f i l l e d  w i t h  fuel  i f :  

normally low; or (b) the fuel  were abnormally concentrated i n  uraniurr.; 

or ( c )  the  control rods were withdrawn from the positions they normally 

occupy during f i l l i n g .  

such an accident. If, despite the precautions, the reactor were t o  go 

c r i t i c a l  under such conditions, there  would be a power excursion, whose 

s ize  would depend on the source power and the r a t e  of increase of re -  

ac t iv i ty .  The core temperature would r i s e  rapidly during the i n i t i a l  

power excursion; then, i f  fuel  addition were continued, it would r i s e  i n  

pace with the  increase i n  c r i t i c a l  temperature. 

(a) the core temperature were ab- 

Interlocks and procedures a re  designed t o  prevent 

Preliminary examination of the consequences of f i l l i n g  the  MSRE core 

with salt containing excess uranium w a s  made for  several assumed conditions. 

Tne worst cases were examined i n  de t a i l  t o  determine the corrective action 

required t o  insure safety. 

Fuel ComDosition 

Two mechanisms were considered for enhancing the uranium concentration 

i n  the &el  charged t o  the reactor core. 

assumed tha t  p a r t i a l  freezing of the f’uel salt had occurred i n  the d r a i n  

tank and tha t  the sol id  contained no uranium. 

uranium concentration was  adjusted t o  make the reactor c r i t i c a l  at  1400 F 
ana it was assumed tha t  fuel of t h i s  composition was charged t o  t h e  reactor 

at  ~OO’F. 

In  the  first of these, it was 

In  the second one, the 
c 

Associated with the first mechanism, the  cornposition of the  remaining 

l.ic_ttid as a f’unction of the fraction of salt fkozen w a s  calculated on t h a t  

basis tha t  only the primary so l id  (6 LiF.BeF2.ZrF4) was  formed. The nomi- 

n a l  composition of the  fue l  mixture was considered t o  be 70 mole k L i F  - 
23% BeF2 - 5% ZrF4 - 1% ThF4 - 1% UF4. 
t r a t ion  of UF4 i s  l e s s  than 1 mole $, a correction w a s  applied for  the 

. nuclear calculations which, i n  effect ,  increased the  concentrations of a l l  

of the  other constituents i n  proportion t o  t h e i r  concentrations i n  the 

c r i t i c a l  mixture. 
the weight fraction of fu-el frozen, t h a t  was used i n  the nuclear cstlculstions. 

Since the  actual c r i t i c a l  concen- 

Figure 5 shows the l i qu id  composition, as a f’unction of 





T h s e  curves cnnnei; bz extrapolated beyond 0.427 of the  sa l t  frozen be- 

cause it would be impossible to farri additfonal primary so l id  since a l l  

of t he  zirconium has been consumed. Another estimate of t he  compcsitlori 

wac subseqLently made by McDufffe el; al.23 using o%her assumptiom abut, 

t he  freezing mechanism. The resu l tan t  differences i n  composition were riot 

s ign i f icant  from the  standpctint of nuclear calcalation r e su l t s .  'The fue l  

coinpositions under the  two sets of assumptLom are compared i n  She Ap- 

pendix, p 9. 
The configuratfon of %he MSRE YuellsoF i s  such t h a t  t he  actAve re -  

-- _. 

gion of t h e  core can be f i l l e d  i f  no more than 3976, by weight, of She 

fuel salt i s  frozen i n  the  drain tal;k, (assmirig t h . a t  t h e  workiig salt, 

volume i s  72 E3 a t  1200'F). The extreme condition w a s  used i n  eva>_i- 

a%ing +,he canseyaences 03 f i l l i n g  the  loop wiYn concen5rated l%ei s a l t ,  

C r i t l c a l i t y  i n  Pa r t l a l ly  F i l l ed  Core 

In  order tJ3 evaluate the  f i l l i n g  accidents, it was necessary t~ make 

some assumptions about t he  f i l l i n g  procedure. 

control rccis were i n  t h e 3  posi+,ioss for  f i l l i n g :  one rcd ful1.y 

i aser ted  and two rods inserted sc  %kat; they control O.l$ reactiv25y fa 

the  fKL1 core. 

It w a s  assumed t h a t  t he  

(See Appendix, p 46, for a discussion of con5rol rods. ) 
Gr~~iier %hese conditfons, t he  reactor, f i l l e d  with normal fue l  at, 1200°F: 

had an effectfve k of 0.997 with the  circulating pump o f f .  

z a l <  f i l l  rate of 1 lrt3/m.: 7i-1 w a s  assumed. 

A uniforr i  

I n  order <Q estimate reactivit :? as a functLon of  fie1 he:&%, statf-cs 

ealculations were made with an IBM-rd~090, 1-dimensional, muitiregb;z, m ~ J . t i -  

group neckon diff'usim code (MODRIG). 

z i t k  a $h ichess  eqgal t o  the height of the  core, L. Control rods and 
contrd-rod thimbles were not considered. Reactivity was calculated 

f o r  varloirs salt  leve ls ,  H, i n  t h e  core. 

t h e  graphite i n  %he upper par t  of the core was considered as a refLectsy. 

%:is model differed scmewhat from %hat, used t o  predict t h e  p r c p t r t h ;  G:? 

the  normal reactor s o  t h a t  the  resuits c u d d  not be used df rec t ly  i n  otlier 

The reactor w a s  tz-eated as a slak. 

For t h e  conditions of H/L <: 1 

2 H. F. McIkffie, "Data orL MSRE F?iel S a l t  Requrred fer Piclear Safety 
Calclrlatfocs," le+,l;er f-,c R .  B. 3riggsj  Fek. 3 3 ,  1962. 
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calculations. 

or" fuel  height should be correct. The r e su l t s  were normalized t o  make 

them consistent with the more detailed calculation of a c r i t i ca l ,  full 
reactor a t  1200°F, and then corrected downward t o  allow for  the fac t  t ha t  

the "normal" reactor i s  s l igh t ly  subcri t ical  when f'ull because of the  con- 

trol rod positions. 

rod worth with changing fuel  leve l .  

of a single control rod as  a function of position i n  the  rull core and i n  

the core 72$ full of fuel  salt. 

However, the re la t ive  changes i n  reac t iv i ty  as a function 

The l a t t e r  correction considered the change i n  control 

Figure 6 shows the fractional worth 

Figure 7 shows the height at which c r i t i c a l i t y  would be achieved as 

a f inet ion of the fract ion of fuel  salt fl-ozen. The c r i t i c a l  height w a s  

a l s c  obtained for  the case where fuel, containing enough uranium for  op- 

eration a t  14OO0F, i s  charged a t  gOO°F. I n  t h i s  case the  c r i t i c a l  H/L 

was 0.700. 

Temerature and Power Excursions 

If c r i t i c a l i t y  i s  achieved before the  core i s  f u l l  and f i l l i n g  is 
continued, the result i s  an excursion i n  power and temperature. 

cursions were examined for  two accidents: (1) the reactor i s  f i l l e d  a t  

1200°F with salt  whose composition has been changed by freezing 0.39 of 

<ne s a l t  i n  the drain tank; and (2) the reactor i s  f i l l e d  a t  gOO°F with 

s a l t  containing suff ic ient  uranium for operation a t  1400 F. 

would be achieved i n  the two cases a t  H/L = 0.691 and 0.700, respect!.vely. 

3 ~ c h  ex- 

0 Cr i t i ca l i t y  

In  both cases the fill r a t e  was fixed a t  1 f't3 of salt per minute. 

Tine equivalent reac t iv i ty  change as f i l l i n g  continues i s  nearly the  same 

for the  two cases, reaching 3.97$ added excess reac t iv i ty  for  the  full 
core i n  the  first case, and 4.10$ i n  the  second. 

difference ex is t s  in the temperature coefficient of reac t iv i ty .  

composition obtained by freezing 0.39 of the s a l t  r e su l t s  i n  a temperature 

coefficient of or i~y 6.5 x 10 

normal fuel.  
i n  question. 

However, an important 

The h e 1  

as compared with 8.8 x low5 for  the  -5 OF'l 

The l a t t e r  value w a s  used i n  evaluating the  second accSdent 

Since the reac t iv i ty  t ransient  i s  nearly the  same for  both accictents, 
bxt the  temperature coefficient i s  l e s s  negative i n  the  case of partLal 1 

freezing, the  power and temperature excursions a re  more severe i n  the case 
W 
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of p a r t i a l  freezing, the power and temperature excursions are  more severe 

i n  the case where par t  of the fuel  salt i s  frozen. 

calculated power and temperature behavior for t h i s  case. 

surge reaches 53.9 Mw 38.9 sec after c r i t i c a l i t y  i s  attained i f  no cor- 

rect ive action i s  taken. 

rlrom the fuel  t o  the graphite w a s  neglected for  the f i rs t  minute of the  

excursion. 

i n  checking the power r i s e .  
of the  power and temperature t ransients .  It was assumed t h a t  t h e  fuel  and 

graphite would be i n  thermal equilibrium a f t e r  3 m i n  and tha t  the c r i t i c a l  

temperature would prevail .  

tine reactor at  the c r i t i c a l  temperature as f'uel addition continued. The 

behavior between 1 and 3 min was not calculated accurately since t h i s  

period represents a t rans i t ion  between the two models, neither one of which 

describes the  condition exactly. However, t h e  estimates of power behavior 

given i n  Fig. 8 during t h i s  time interval  appears sat isfactory for the 

analysis here, since no extreme condition i s  involved. 

Figure 8 shows the 

The i n i t i a l  power 

Since the  power r i s e s  very rapidly, heat t ransfer  

Thus only the temperature coefficient of the fuel  was effect ive 

This s l igh t ly  overestimates the  i n i t i a l  par t  

The power af ter  3 min w a s  t h a t  required t o  keep 

Since the core would be only par t ly  full during an accident of t h i s  

type, there  would be no circulation i n  the core loop and the high-temperature 

fuel  would be confined t o  the act ive region of the core where it could not 

come in to  d i rec t  contact w i t h  the wed& of t h e  system. The fac t  t h a t  the  

core w o u l d  not be full a lso  eliminates the poss ib i l i ty  of any s ignif icant  

p e s s u r e  surge during the t ransient .  
The reactor behavior shown i n  Fig. 8 i s  based on the assumption t h a t  

no corrective action of any kind i s  taken. 

t h a t  the operators ignore the condition and continue f i l l i n g  at  the normal 

r a t e  for  13  min but t ha t  no automatic action, such as control rod reversal, 

occurs. 

a t ively mild corrective action even i f  f i l l i n g  i s  continued a t  the normal 

ra te .  

This would require not only 

The extent of the  excursions can be dras t ica l ly  reduced by r e l -  

In  an accident of t h i s  type, the  reactor period becomes very short 

while the  power i s  s t i l l  quite low. For the  case i n  question, a ?-see 

period would be reached 17.7 sec after at ta ining c r i t i c a l i t y  and the pot\rer 

would be about 5.5 watts. 

strumentation ~ 3 . 7 . 3 .  provide a re l iab le  period indica-ccion at t h i s  power l.eve.l_ . 
It is*expected tha t  the  proposed nuclear in- 
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If insertion of the two available control rods a t  normal speed (-0.07576 
&/k per second) i s  s ta r ted  when the period reaches 5 sec, the ini t iaL 

power peak i s  l imited t o  32 kw and the fuel  temperature rise i s  l e s s  than 

1°F. The effect  of the  control rod insertion i s  strong enough tha t  a, 

moderate delay i n  the period channel would not r e su l t  i n  an excessive 

power surge, 

If,  i n  sp i t e  of the insertion of the control rods, fuel  addition is 

continued unt i l  t h e  core i s  full, the reactor w i l l  again become c r i t i c a l  

when the core i s  93.576 f i l l e d .  

w i l l  add only 0.19% excessive reacti.vity, and 2.21 min a re  required t o  

add t n i s  amount. 

temperature of 122g°F and the associated power t ransient  w d d  be very 

s m a l l  because of the limited amount of reac t iv i ty  tha t  i s  available and 

the low r a t e  a t  which it can be added. 

However, complete f i l l i n g  for  t h i s  case 

The reac t iv i ty  i s  equivalent t o  an equilibrium c r i t i c a l  

Other F i l l ing  Accidents 

Another s i tuat ion which can lead t o  a f i l l i n g  accident i s  t h a t  i n  

which the core i s  f i l l e d  with normal fie1 a t  t he  normal temperature but 

w i t h  a l l  control rods fully withdram. In general, the  response of the 

system would be similar t o  tha t  for  the accident described above. 

mx:'LmUm amount of excess reac t iv i ty  available for  t h i s  accident i s  orily 

2.72% because the normal fuel  composition i s  such tha t  t h e  reactor is, 

s l i gh t ly  subcri t ical  w i t h  only one control rod fu l ly  inserted and the 

other two nearly W l y  withdrawn. 
accident would be much less severe than those resul t ing Prom f i l l i n g  the 

core w i t h  fuel  from which 39% of the salt has been separated by freezinE;. 

%.e 

Thus, the consequences of tine above 

Case 4 - Loss of Graphite from Core 

If a graphite s t r inger  were t o  break completely in to  two pieces while * 
fuel  i s  i n  the  core, and the upper end could f loa t  up, 

in 'a the space Just  about the fracture,  causing an increase i n  reactivit ,y,  

The calculated effect  i s  0.003876 6k/k per inch of s t r inger  replaced with 

Tuel a t  t he  center of the core. If the  en t i r e  central  s t r inger  were 

fuel  would move 

~ * 
Rods and wires through the lower and upper ends of the s t r ingers  
should prevent t h i s  accident. 



replaced with fuel,  the reac t iv i ty  w o u l d  increase only 0.135 6k/k. 

amount of reac t iv i ty  would have no serious consequences, even i f  added 

instantaneously. 

Tuel flows upward a t  8.6 in./sec and the  graphite could not move up much 

fas te r  than t h i s  because of drag.) Figure 9 shows the  results of an in- 

s-i;antaneous increase of 0.17% 6k/k with the reactor a t  10 Mw. (Peak power 

and. temperatures would be lower for  the same s tep at  lower i n i t i a l  powers.) 

Eod reversal  could effect ively reduce peak power and temperatures for  a 

O.l$ 6k/k step, as  shown by the dashed l i n e s  i n  Fig. 9, where a ramp of 

-O.O7fs$ 6k/k per second starts one second a f t e r  the  i n i t i a l  s tep increase. 

This  

(Actually the reac t iv i ty  would be added i n  a ramp. The 

Case 5 - Fuel Additions 

J 

. 

I f  uranium were added t o  the  circulating fuel  i n  such a way tha t  it 
remained concentrated i n  a small vol.ume, a reac t iv i ty  t ransient  would be 
produced each time the 'lump" passed through the core. 

Additions of  concentrated uranium t o  compensate for burnup w i l l  be 

par t  of  the normal operation of the  reactor.  

iiition sysiern i s  such Li l t i i  only a sz~all m o u l t  of  uranium can 'oe added i n  

one batch, and the fresh uranium merges with the circulating fuel  gradu=dly. 

Tnese l imitat ions insure tha t  the reac t iv i ty  t ransients  caused by a nornial 

fuel  addition a re  inconsequential. 

The design of the fuel  ad- 

Fuel make-up i s  added through the sampler-enricher mechanism. IlYozen 

salt (probably 73$ LiF-27$ UF,+) i n  a perforated container holding a t  most 

120 g of  U235 i s  lowered in to  the pimp bowl. 

mixes in to  the 2.7 rt3 of fuel  salt i n  the  bowl. 

the bowl gradually carr ies  the added uranium in to  the main circulat ing 

strPam. 

i s  0.061$ 6k/k, which w i l l  be automatically compensated for  by the servo- 
driven control rod. 

addition was calculated by postulating t h a t  120 g of  U23*4entered the 

circulating fuel  a t  the same instant,  t ha t  it was  carried through the 

heat exchanger i n  a "front" and all entered the  bottom of the  core at  the 

s m e  instant,  with equal amcunts entering each of the  f'uel channels. For 

t h i s  si tuation, the reac t iv i ty  increase due t o  the added uranium r i s e s  t o  

There the salt  melts and 

The 65-gpm bypass through 

The net increase i n  reac t iv i ty  from the addition of 120 g of U 23 5 

A reasonable upper l i m i t  on the  t ransients  caused b a normal fuel  i 

u 
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a maximum of 0.39% 6k/k i n  3.8 see, then decreases as  the f l a t  volme 
element containing the additional uranium moves up and out of the core. 

The power and temperature t ransients  depend on the i n i t i a l  power. Fig- 
ure 10 shows r e su l t s  calculated f o r  i n i t i a l  powers of 10 kw and 10 IW, 

with no corrective rod action. The r a t e  of reac t iv i ty  addition by the 

mcvfng fuel  i s  slow enough t o  permit effect ive counteraction by t’ne use 

of the rods. Jn the 10-Mw case if a negative reac t iv i ty  ramp of -O.O75$ 
6K/k per second i s  s ta r ted  when the  period reaches 5 sec, the power peak 

i s  reduced t o  22 Mw, the  fuel  mean temperature r i s e s  only 10°F and the 

graphi5e r i s e s  l e s s  than 1°F. 

’Case 6 - Unco~troll-ed Rod Withdrawal 

Excursions can be produced by uncontrolled withdrawal of the  corifrcl 

rods. A s  a l i m i t i n g  case, it was assumed tha t  the reactor had been shut: 

down by inserting all control rods that the system had been cooled tm 

y00’F with the  fie1 pump running. 

?resent, the reactor w . d d  be subcri t ical  by 1.64%. 
control rod wortn assumptions. j 

Under these conditions, w i t h  no xenon 

(See Appendix for 

Simultaneom withdrawal of all three control rods a t  the  normal rate 

of 0.4 in./sec was then assumed. A t  t h i s  ra te ,  the  reactor would bec:ome 

c r i t i c a l  50.6 sec a f t e r  the  start 02 the  rod motion and the control rods 

would be near the region of t h e i r  m a x i m u m  effectiveness. 

The severity of the t ransient  depends on the power l eve l  t o  which 

X i i e  reactor has decayed a t  the  time of the  accident. 

t ransients  i n  power, pressure and fuel  mean temperature as a function of 

t h e  a f t e r  the  achievement of c r i t i c a l i t y  for  three d i f fe ren t  powers ar; the  

t, i.-x kef = 1.0. After the i n i t i a l  excursion, the three cases merge ifit;.? 

a single l i n e  fcr each ef the variables. The power would remain at. sibout 

200 Kw until. the warm f lu id  produced by the i n i t i a l  excursion returned to 
fhe core. 

t .h is  re-entrance would occur i n  about 24 sec.  

decrease t o  tohe l eve l  required t o  heat the en t i r e  core loop and compensate 

the contimed reac t iv i ty  addition. The temperature would continue t o  rfke 

u n t i l  %he rods stopped or were flzlly withdrawn from the  core. 

Figure 11 shows the  

Since the  power i s  not s ignif icant  u n t i l  6 sec a f t e r  crit.:”,caXty, 

A t  tha t  t i m e  t he  power w m l c t  

The. eqzi.- 
e -- 1 ?hr+iirn - -  --- t.e~py~.t.ij.re wFt.k t.he r 0 d - s  fifily vithd.raw71 wobfid be 1.h73 F, 1I1y~eve?*, 

. 
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since the  graphite i s  heated much more slowly than the fuel  (a f te r  18 see 

the graphite temperature i s  only 950°F), the  mean fie1 temperature might; 

remain above t h i s  value for  as long as 5 min. 

RESPONSE TO ARBITRARY ADDITIONS OF REACTIVITY 

In  addition t o  the analysis of conceivable s i tuat ions which might 

a r i s e  during the reactor operation, the response of the power, the core 

f'uel and graphite mean temperatures and the core pressure t o  a rb i t ra ry  

changes i n  reac t iv i ty  was calculated. 

c lear ly  the factors governing the kinet ic  behavior of the reactor.  

The purpose was t o  delineate nore 

Ramp Additions 

If reac t iv i ty  i s  added very slowly, the r e su l t  w i l l  be a gradual in-  

crease i n  fue l  and graphite temperahres a t  the r a t e s  necessary t o  cancel 

out the reac t iv i ty  being added, 

t o  t ha t  required t o  heat up the  reactor.  

the loop, about 17 sec pass before %he inlet temperature can r e f l ec t  the 

increased out le t  temperature resul t ing from tine ramp. 

tu re  r i s e s  during t h i s  interval,  the  power must continue t o  increase t o  

heat up the incoming fuel  more and Inore, 

t o  r i s e ,  the power will l eve l  o f f .  

d i t ion  of I$ 6k/k i n  30 sec. 
(simulated) radiator air f l o w  and in l e t  temperature were l e f t  constant 

throughout. 

ended. Note a l so  the re la t ive  sluggishness of the graphite temperature. 

(The graphite comprises TO$ of the core heat capacity, but only 6% of +,he 

power i s  generated there . )  

The power w i l l  r i s e  from i t s  i n i t i a l  level. 

Because of the  transport  lstg i n  

A s  t'ne mean tempera- 

When the i n l e t  temperature begins 

Figure 1 2  shows r e su l t s  (from an analog simulation) of the  ramp ad- 

The power was i n i t i a l l y  a t  10 Mw, and t h e  

Note tha t  the power hat1 reached i t s  peak before the ramp 

A s  the ramp r a t e  i s  increased, a power peak occurs ea r l i e r  during the  

ramp addition, followed by a graduc; increase as the required fuel  mean 

temperature rises far ther  above the  inlet temperature. Figure 13 shows 

r e su l t s  of three ramp additions of 10-sec duration. The development of 
the  power peak as a fbnction of ramp rate i s  c lear ly  shown. 

sults and those described hereafter were obtained by a d ig i t a l  proceciure, 

MURGATROYD, which only considers the  case where the inlet temperature 

These re- 
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reinains constant. A t  low reac t iv i ty  addition rates ,  the  calculations give 

a gradual pressure increase i n  the reactor due t o  compression of gas i n  

the pump bowl as the fuel  expands. 

system would prevent most of such a r i s e . )  

the power excursion leads t o  a core pressure disturbance caused by in- 

e r t i a l  and f lu id  fr ic t ion forces as the fuel between the core and the ex- 

sansion space i n  the pump bowl i s  accelerated. 

(In rea l i ty ,  the  pressure control. 

Increasing the magnitude of 

The response of the  system t o  reac t iv i ty  ramps i s  strongly dependent 

upon the i n i t i a l  power of the reactor, since t h i s  a f fec ts  the  amount of 

excess reac t iv i ty  which can be introduced before the r i s ing  power s ign i f i -  

cantly a f fec ts  the  core temperatures. 

Figure 14  shows the power behavior resul t ing from ramp additions of 

25 i n  10 see, beginning a t  four i n i t i a l  powers from 10 w a t t s  t o  10 mega- 

w L t t s .  T'e s ize  of the ear ly  peaks i n  power i s  related t o  both ramp r a t e  

and i n i t i a l  power i n  Fig. 15. (Note t h a t  the re1at;ion does not ex is t  a t  

low ra t e s  of reac t iv i ty  addition, where the  ear ly  power peak does not 

exis t ,  as  i n  the O.l$/sec case i n  Fig. 13 . )  
iitzending tine sharper power increases a re  larger  core pressure surges. 

(The i n e r t i a l  force i s  proportional t o  the f irst  derivative of the power.) 

Figure 16 shows r e su l t s  of calculations for  the cases for  which the powers 

a re  shown i n  Fig, 15. The pressure shown i s  the  cdcu la t ed  deviation of 

tne core pressure from the i n i t i a l  value. A t  steady s t a t e  with fuel  circu- 

l a t ing  a t  1200 gpm and the  pump bowl a t  20 psia, t he  pressures i n  the core 

w i l l  range f'rom about 29 psia  a t  the bottom t o  about 23 psia  a t  the  top. 

The equations used t o  compute the pressure t ransients  took no account; of a 

lower l i m i t  on absolute pressure, which accounts for  the  impossibly low 

swings i n  pressure a f t e r  the  peaks in  Fig. 16. 
of the pressure excursions t o  ramp r a t e  and i n i t i a l  power. 

Figure 17 r e l a t e s  the sLze 

The behavior of the  fuel  mean temperature shown i n  Fig. 16 shows a 

progression toward a peak such as appears i n  the power a t  high r a t e s  of 

reac t iv i ty  addition and low i n i t i a l  power. The first par t  of the tempera- 

t u re  t ransient  i s  seen t o  depend on i n i t i a l  power, but a f t e r  a few seconds 

the temperature behavior i s  the same i n  a l l  cases. 

a f t e r  the  ear ly  t ransients  are a l so  pract ical ly  independent of the  i r i i t l a l  

p w p r ,  as shown in Fie. 3.4 and 16.) 

(The power and pressure 

The maximun Aiel. mean temparnti.xre 

W 



w 



': . 1 





. 



reached 2 5  a r e s u l t  of a ramp add:.-(;Lon deFend:; eventually GB t;'k t s ? n l  

mount  of r eac t iv i ty  added more than on the  rate. Figure 18 shcws the  

r e l a t i m  for  ramps of duratdon long enoilgh so t h a t  there  i s  no dependen:,e 

of fbel %emperatwe on i n i t i a l  powel*. 

S3ep Additions 

MJRGATROYD was used ti: calcula-k a f e w  cases of s tep  addi$E?ns (jf 
r eat6 t i v i t  y . 

For a s tep addition of a given amourit, cf react ivi ty ,  the  higher ?.he 
i n f t i a l  power, the  l a rge r  are the  power, temperature and pressare trm- 
s ien ts .  Figure 19 shows the  power Lransients caused by r eac t iv i ty  sl,epr; 

of various sizes, wf%h t h e  power i x l t i a l l y  at  10 Mw. 
A s t ep  of 0.338% 6k/k makes the  reactor exackly prompt c r f t k a l .  

response of t h e  power and mean temperatxzes t o  a s tep  cf t h i s  s4ze 5.h siiclerr~ 

i n  Fig. 20. 

peak temperatures can be reduced s i lp i f i can t ly  by corrective rod ac:t,"7tor2 

even thz  rather slow action assumed i n  the  case depicted. 

:%e 

This figure a l so  shows tha', even for  a prampt-critical s$ep, 

Pressure surges a re  not high unless $he s tep i s  well a b o x  prprnpf. 

critAca1. 

only 1 .3  psi; for t he  17'0 step, t h e  peak w a s  230 ps i .  

Fcr t h e  0.338:: szep a+, i9 Mw the  peak pressure (a+, 0.6 ESC) vas 

The effec5 of i n i t i a l  power w a s  investigated by calc7iLa"Cng reszll+s 

of 2 0.3385 s tep  at. 10 kw i n i t i a l  power 

~4 Kv (a5 3.5 see), t he  peak fuel  meaW; temperature w a s  1286% (at, 9 sec 1 
a n d  t he  peak pressure w a s  only 0.75 p s i  (at 3.0 set). 

In t h i s  case the  peak pswer wts 
/ 

DISCUSSION 

I n  the  analysis of the  conceivable accidents, t he  assumptions aiid 

calculat,iorral methods were chosen t o  produce pessimistically high pwerr;, 

temperatures and pressures. 

Lle accidents w i l l  lead t o  eatastro:?hic f a i lu re  of the  reactor even f ~ f  110 

corrective actdon i s  taken. Thus i C ,  can be said t h a t  the  safety of ,he 

uperators and the  Fopdace does not r e l y  upon the  functioning of ex5c:rnal 
protective or corrective devices. 

The reisults indicate -khat none of the  cancelvtz- 

Tlie response t o  a rb i t r a ry  ramp and step additions of react,fvit0y shrw 

%hat additions we31 i n  excess cf aqrkhing foresecable s J c i l L  dc ni.t - p ~ & , ~ : e  

pressures which wci;;Ld burs t  the  reactor.  
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V Some of the  postulated accidents lead t o  high temperatures which 

might s t r a in  the core internals,  o r  other par t s  of the system, causing 

d-amage and interrupting operation. 

normally prevented by mechanical devices or operating procedures. 

ally there  i s  multiple protection. In  evauat ing  the chance of interngl 

damage t o  the reactor, one must consider the probabili ty of simultaneous 

f a i lu re  of a l l  protective devices. 

A l l  of the damaging accidents a re  

Usu- 
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APPJiXDIX I 

DELAYED NEUTRONS 
* 

The d ig i t a l  kinetics calculations whose results a re  reported here 

used values for  yields and half-l ives of delayed neutron precursors which 
tjere measured by Keepin and Wimett for  thermal-neutron f iss ion of U 23 5 

Five groups of delayed neutrons were included i n  the calculations. 

shortest-lived group lumped the shortest-lived two groups observed by 

Keepin and Wimett . ) 
(The 

The effective yield with the fuel  circulating was calculated for  

each group, assuming slug flow and uniform production of precursors over 

the core volume. The calculations assumed a flow r a t e  of 1200 gpm, a core 

volume of 19.6 ft3, and an external loop volume of 46.4 f't3 (core residence 

L bizle, 7.3 sec; external loop residence time, 17.3 sec) .  No weighting 
factors  w e r e  applied t o  account for  the  differences i n  energy and spa t i s1  

source dis t r ibut ion for  the  delayed and prompt neutrons. 

The t o t a l  yield for  a l l  groups i s  0.00640 delayed neutron/total 

The neutroris eiiiitted i n  the COTE zr~oui1-b t o  0.00338 delayed neutron. 

neutron/total neutron, a difference of 0.00302 caused by circulation. 

A breakdown by groups i s  given i n  Table A-1. 

Table A-1. Delayed Neutron Data Used i n  Kinetics Calculations 
by MURGATROM 

H a l f  -Li f e Decay Constant Yield Effective Yield 
Group (sec) (sec-1 ) (n/n 1 ( n / d  - 
1 55.9 0.0124 0 000211 o.0000~3 

2 22.7 0.0305 0.001402 0.000426 
3 6.22 0.1114 0.001254 0.0004'71 

5 0.508 1.364 0.001005 0.0009$+ 

4 2.30 0.3013 0.002 328 0.001513 
- 

o.006400 0 003 3'77 

* 
Since these computations were made, s ix  groups have been incorporated in  
the  MURGATROYD calculations. 

W 



APPENDIX 11 -- 
CONTROL RODS 

Need for  Control Rods i n  Normal Operation 

During normal operation of the reactor, reac t iv i ty  tends t o  decrease 

for several reasons. 

i s  added t o  compensate for  the  decrease i n  react ivi ty ,  it will be necessary 

t o  withdraw a control rod (or rods) t o  compensate for: 

delayed neutrons due t o  circulation; (2) the ingrowth of xenon-135 during 

and af'ter high-power operation; (3 ) power coefficient of reac t iv i ty  (tm- 
perature r i s e  of graphite re la t ive  t o  fuel);  and (4) burnup of U235 i n  the  

fuel.  Table A-2 shows the  magnitude of these e f fec ts  for  normal operation 

a t  10 Mw. 

described on page 40, the  numbers i n  Table A-2 core a re  taken from the  f irst  

Addendum t o  ORNL CF-61-2-46, E R E  Preliminary Hazards Report. 

If the  fuel temperature i s  held constant and no f i e 1  

(1) the los s  of 

With t h e  exception of the delayed neutron losses  which have been 

* 

Table A-2. Effects Requiring Shim Action of Control Rods 

~~ - 

Effect 6k/k, $ 

Delayed neutron losses 0.3 
Xenon (equilibrium a t  10 Mw) 1.3 
Power coefficient (LO MW) 0.2 

Eurnup (300 Mw-days) 0.2 

2.0 

Table A-2 does not include poisons which build up gradually i n  the  

fuel .  Samarium-149 i s  one of the  more important poisons; it will build 

ug and start t o  l eve l  off a t  1.14 6k/k i n  about 3 months a t  full power. 

There a re  other f iss ion products which will a l so  saturate  i n  a few weeks 

or months. S t i l l  other f i ss ion  products, and corrosion products, w i l l  

probably continue t o  build up throughout the operation of the  reactor, 

Jt 
Recent data on s t r ipper  eff ic iencies  lead t o  considerably higher 
estimates of xenon poison. 



causing a gradual increase i n  poisoning. Fuel additions w i l l  be used. t c  

compensate ror the  poisons which grzdually build up. 

Anot'ner requirement for  normd operation i s  t h a t  a shutdown m a r &  

be provided, so  t h a t  the reactor i s  subcr i t ica l  during s ta r tup  and skutdcwn. 

This could be at ta ined by using the loop heaters t o  raise the  core tempera- 

t u re  above the  c r i t i c a l  temperature. A b e t t e r  way i s  t o  use a rod or rods. 

The size  of the  shutdown margin i s  Ciscussed la te r .  

Regulation i s  an important function of  t he  control rods. One oi' t he  

rods will be used i n  a servomechanism t o  hold e i the r  the  nuclear power c r  

some temperature a t  a setpoint.  

of about 0.2% 6k/k i s  adequate for t h i s  purpose. 

A niax imum deviation from t he  mean position 

Safety action, i n  the  sense of rods moving very rapidly t o  decrease 

the  react ivi ty ,  i s  not contemplated for the  MSRE. The rods should be 

capable of compensating for unexpected r e l a t ive ly  slow increases i n  r e -  

ac t iv i ty ,  however, ( a s  by fue l  permeation of t he  graphi te)  so as t o  protect 

-the reactor  from the  excessive temperatures which would r e s d t .  

worth which should be available for t h i s  function i s  not c lear .  

The rod 

Control Rod Worth 

The combined worth of all three control rods of t he  present design 

has been calculated t o  be 6.79 6k/k. 

or groups of rods P ~ l y  inserted o r  withdrawn i s  shown i n  Table A-3. 
>io. 2 i s  diagonally opposite t he  gr&phite samples.) 

The r eac t iv i ty  worth of s ingle  rods  

(Eod 

Table A-3 .  Control Rod Worth 

Arrangement Reactivity, $ 6k/k 

A l l  rods out 

KO. 2 in ,  others out 

No. 1 or No. 3 in, others out, 
KO. 1 and 3 in, No.  2 out 

No. 2 and No. 1 or 3 in,  other out 

All rods i n  

0 

-2.8 

-2.9 

-5.3 
-4.9 
-6.7 
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Figure A-1 shows predictions of rod effectiveness versus tne length in- 

serted in to  the core. 

l a t ions  with EQUIPOISE-3, a two-group, two-dimensional, multiregion 

difi%sion method. 

a single rod (or rods moving together) when the flux i s  not already per- 

turbed by another rod i n  the core. It should apply f a i r l y  well i f  ar.other 

rod i s  f u l l y  inserted, but the flux distor t ion by another rod inserted E O  

t na t  the rod end i s  near the center o f t h e  core would came the curve t o  

be considerably i n  error .  

the  f i rs t -order  perturbation approximation, and i s  shown merely for com- 

parison with the more accurate prediction. 

The most re l iab le  prediction i s  based on calcc- 

The curve shown should be a good representation for  

The sine-squared curve i s  tha t  predicted by 

Deployment of Rods 

It has been planned tha t  two rods be kept f U l y  withdrawn during all 
operations so tha t  t h e i r  poisoning effect  would be available t o  counteract 

fuel  permeation of the  graphite or other unexpected e f fec ts  tending t o  
increase reac t iv i ty .  

and shutdown. 

A-2, control with a single rod i s  possible. 

One requirement of a combination shim-regulating rod i s  t h a t  the rod 

The remaining rod would be used fo r  regulation, shim 

If the  shim recuirements are  no larger  than shown i n  ?'able 

caii t rave l  f a r  enough t o  provide the shimming necessary and tha t  the speed 

be high enough a t  the ends of i t s  shim movement and not too high i n  the 

middle for good regulation. Using the figures from Table A-2, from the  

t im the  reactor goes c r i t i c a l  ( w i t h  the  fie1 circulat ing)  w i t h  a clean, 

rWly f ie led  core unt i l  the reactor i s  a t  f u l l  power, with equilibrium 

xenon and the m a x i m u m  burnup, the  rod must be withdrawn 1.7s 6k/k. 

i s  only 0.39 of the worth of rod 1 or rod 3 when the others a re  withdram. 

If one allows an additional 0.2% 6k/k a t  each end for  regulation, the  ex- 

treme t rave l  i s  0.72 of the  rod worth. The fuel  concentration could be 

adjusted so tha t ,  a t  the extremes, the rod would be poisoning 0.88 and 0.16 
of i t s  worth. Figure A m 2  shows t h e t  the d i f fe ren t ia l  rod worth var ies  by 

only a factor of 1.3 over t h i s  range. This i s  quite acceptable since simu- 

l a t o r  tests showed good regulation over a t  l e a s t  a fourfold range of rod. 

speeds, from 0.02 t o  0.08% 6k/k per second. 

Tnis 
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Another factor  t o  consider i s  t he  shutdown margin. If the  range i s  

adjusted as described above, t he  reector would go c r i t i c a l  with the  ihel 

c i rculat ing when the  rod i s  poisoning 0.82 of i t s  worth. With the rod 

f u l l y  inserted the  reactor w i l l  be subcr i t ica l  by 0.18 x 2.9% or 0.525 

dk/k while t he  fue l  is  circulating, or  by 0.22$ 6k/k with the  fuel pump 

of f .  This assumes tha t  the  core i s  at  the  normal temperature. The core 

tem.perature could be as much as 0.0022/8.8 x 10'' = 25 F below normal 

without t he  reactor reaching c r i t i c a i t y .  Therefore, an e r ror  of less  

than t h i s  amount i n  temperature measurement would not lead  t o  uninten- 

t i ona l  c r i t i c a l i t y  during f i l l ing.  

0 

In  the  analysis of various incidents, one form of corrective actioc. 

considered w a s  a ramp of -0.075% 6k/k per second. 

a rb i t r a ry  rate, it corresponds t o  a value which could eas i ly  be obtained. 

with the  current control rod design, 

Although t h i s  i s  a n  

In determining the control rod speed, it w a s  assumed t h a t  t h e  r a . t e  

or' r eac t iv i ty  change should average 0.02% 6k/k per second over t h e  ec.t ire 

diztance traversed by a s ingle  rod. 

rate corresponcis t o  a f u l i  t raverse  of t i e  roci range i n  about 130 see. 

Tie t rave l  time w a s  fixed at 130 sec and, since the  rod range i s  ab0v.t 

60 in., t h i s  resul ted i n  a rod speeii of about 0.4 in./sec. 

For a rod worth 2.9$, t h i s  aversge 

The corrective action postulated i n  the  r eac t iv i ty  accidents w a s  a 

reversal  of a l l  three rods a t  normal speed. Since the  rod-worth curves 

are not l i nea r  (see Fig, A - 1 )  t he  r eac t iv i ty  ramp resu l t ing  from a rod 

reversal  depends on the  i n i t i a l  rod posit ions.  Figure A-3 shows the  

negative r eac t iv i ty  added as a f'unction of t i m e  for  two d i f fe ren t  i n i t i e l  

posit ions 03 the  rods. I n  t he  f i r s t ;  case it w a s  assumed t h a t  Rod 1 

(wo=.tn = 2.95 6k/k) w a s  i n  a posit ion of maximum d i f f e ren t i a l  worth end 

that  Rods 2 and 3 were f u l l y  withdrawn. In the  second case, t ne  init&]. 

p s i t i o n  of Rod 1 w a s  t he  same, but Rods 2 and 3 were started from posi- 

t ions  where they were poisoning a t o t a l  of 0.3% 6k/k. Since it i s  c lear  

from Fig. A-1 t h a t  a f u l l y  withdrawn rod must t r ave l  several inches before 

it has any s ignif icant  e f fec t  on react ivi ty ,  the  i n i t i a l  ramp i n  case I 

i s  essent ia l ly  t h a t  for a s ingle  rod moving a t  0.4 in./sec i n  i t s  region 

of m a x i m u m  d i f f e ren t i a l  worth. The i n i t i a l  rate fo r  case I1 (average for  

t h e  first, 6 s e e )  is -O.O75$ 6k/k per second. -- t h e  value used i n  studying I 

the  incidents. 

. 
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AFPENDIX I11 

ANALYSIS OF COLD SLUG ACCIDmTS 

The circulating-fuel reactor kinet ics  calculation which i s  coded. f c r  

the  IBM-7090 (PURGATROYD) cannot be used d i r ec t ly  t o  compute beh- uvior ir. 
a "cold-slug" accident. One reason i s  t h a t  the  "mean rue1 temperature" 

5.3 defined as the  mean of the inlet  and outlet ,  so a cold slug would appear 

as a s tep  change i n  mean temperature (and r eac t iv i ty )  whereas actual ly  E ,  

cold slug causes a ramp change i n  the  average fue l  temperature. To c i r -  

cLurvent some of t he  shortcomings of MURGATROYD, t he  cold-slug accider.ts 

>ere analyzed by the  following procedure. 

In  the  first step, r eac t iv i ty  w a s  calculated fo r  cores which were 
0 

2-5 1200 F except cooler f'uel w a s  cortsidered i n  the  lower par t  of t he  P ~ e l  

channels. MODRIC, a multigroup, one-dimensional neutron diffusion C E ~ C L -  

13;tion w a s  used t o  obtain the  c - m e s  shown i n  Fig. A-4, Microscopic C ~ C I S S  

sections appropriate f o r  a neutron veloci ty  d is t r ibu t ion  a t  1200 F w e r e  

u s d - - - o n l y  t he  density of the  fue l  i n  the  lower par t  of t he  core w a s  

varied. 

0 

A t  1200 gpm, f ie1 passes *om t he  bottom of t h e  core t o  t h e  t3p  i i n  

This rat-e w a s  Gsed d i r ec t ly  t o  convert t he  curves of Fig. A-4 7.3 see. 

tc: t he  curves c#f k vs time for  various cold slugs shown i n  Fig. A+* If' 

the  inr t ia l .  value of  k at. the  beginning of t he  coid slug were l o w  encugk. 

ss  t h a t  the  power did not r i s e  and af fec t  the  fue l  temperature, these 

cur:ies i n  Fig. A-5  would be the  t r u e  var ia t ion of k from the  Ln. l t ia .1  

n l u e .  

actdvi ty  are such tha t  heat transfer. fpom the  graphite t o  t h e  ccld slug 

::cLd have l i t-ble e f fec t .  

s l i gh t ly  below t h a t  calculated here. 

Rat,ios of heat capacitfes and temperature coeff ic ients  of re- 

The tendency would be t o  lower the  react!,-L.i%>- 

The next s tep  was t o  run kinet ics  calculations i n  which t h e  fuel. tem- 
perature was not, perturbed by any cold slug, but i n  which the  reactor  W E S  

sabgected t o  a r eac t iv i ty  t rans ien t  such as would be produced by a m'id 

slug unaffected by power feedback. I n i t i a l  conditions were 1200 F fie1 

and graphife, k = 1 and a power of 10 kw. A t  zero time a negatfve s t ep  

of O.3O2$ 6k/k w a s  inserted t o  represent the loss  of delayed ne;lt.rcn pre- 

0 

c1;ysc,rs r.rLnn *-nl n,"--.-l 0 4 4  m n  e m r n n r l n n A  l.llb.ll LALb-uvAvII ~ V A u u b A L + b u .  %cn 9 serie:: of  p ~ s f l f f m  and 
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negative ramp changes i n  reac t iv i ty  was introduced t o  produce %he vam- 

at ion shown i n  Fig. A-5,  
The kinet ics  calculation gave t rans ien ts  i n  power, pressure, an?. 

meail temperature. 

Fig. A-6. 
values by as much as 5 F. 

Results for  20- and 30-ft3, 900°F slugs are shown i n  

In  the  other cases, temperatures never deviated from i n i t i a l  
0 

The end result was obtained by superimposing the  t ransients  of 

Fig. A-6 on those which would be caused by the  cold slug without nucl.ear 

e f fec ts .  

ITuel or of the graphite by the  sum of two functions of t i m e ,  one of which 

responds t o  the  cooling effect  of the cold f ie1 entering the  core, the 

other responding t o  the  nuclear heat generation, Variations i n  both 

a f f ec t  t he  react ivi ty ,  which determines the  power. 

second temperature f'unction i s  b u i l t  i n to  the  kinet ics  calculation. The 
ef fec t  of t he  f irst  i s  introduced tlirough the  r eac t iv i ty  t rans ien t  which 

was imposed. Only the  var ia t ion i n  the  power-affected temperature a f fec ts  

t he  pressure, since the  var ia t ion i n  the  other mean temperature reflectz: 

only the  movement OT cold Tuei IOrom one part of the  loop t o  another, not 
a change i n  t h e  volume of fue l  i n  the  loop. 

The var ia t ion of the  fuel  and graphite mean temperatures during the  

passage of lo-, 20-, and 30-ft3 s1uE;;s of gOO°F fuel,  without heat gerter- 

otion i n  the  core, are shown i n  Fig. A-7. 
account heat t ransfer  between the  fliel and the  graphite; t he  dashed I.ines 
S ~ O W  the  fuel mean temperature which would r e su l t  from the passage 01' the 

cold slug without heat transfer. 
bined with the  temperature rise due t o  nuclear heating, shown i n  Fig,. A-6, 
t o  obtain t h e  ne t  e f fec t  shown i n  Fig, 4, 

This procedure amounts t o  representing t h e  temperature of t he  

The ef fec t  of the  

The so l id  curves take i n t o  

The so l id  curves of Fig. A-7 were corn-. 

Because of t he  low i n i t i a l  power, the period becomes qui te  short  

several seconds before the  power has r i s en  t o  a l eve l  cm.xing any si&:nifi- 

cant heating. 

period s ignal .  

yOO°F slug with two types of corrective action. 

-0.075$ dk/k was superimposed, beginning at  2.3 sec where the  period 

reaches 5 sec. In  t h i s  case the  power peaked a t  0.66 14w a t  8 sec, there  

was no s ignif icant  oressure r ise  and the  nucleai- heating raised the  Fuel. 

Thus effect ive rod act ion can be i n i t i a t e d  by the  short-  
MURGATROYD w a s  used t o  examine the  behavior during a 20-f%", 

In  the  first, a ramp of 
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mean temperature only O.T°F. 

between 3.2 and 4.2 see (beginning when t'ne period reached 2 sec). 

l imited the power "peak" t o  only 0.7 kw. 

In the second case, -4,0$ 6k/k w a s  inserted 

l'his 

During any substantial  power excursion, material near the  center of' 

the  core w i l l  be heated well above the mean temperature, 

were done t o  estimate how high the  peak fuel  temperatures might go dr?.ring 

the 20-ft3, gOO°F slug without corrective action. 

it was assumed tha t  there w a s  no heat t ransfer  between the fuel and the 

graphite. 

production i n  the fuel .  

power density i s  1.93 times the  m e a n  for  the core. The i n i t i a l  power was 

only 1 0  kw, and a t  6 sec, the prof i le  shows pract ical ly  no e f fec t  of heet- 

ing, only the  cold front which has advaced t o  52 in .  by t h i s  time. 
seciuent prof i les  show the temperature peak r i s ing  near the center of the  
core during the power surge, then moving on toward the out le t  as the  power 

drops. 

of t h i s  interface also shows. The clotted l i n e  shows how fuel  which enteredc 

a% a par'iicular t h e  liea'is ug rapidly dwiiw t h e  pmer surge, then more 

gradually as  the specific power decreases because of the drop i n  t o t a l  

power and the movement of the fuel  away from the center of t he  core. 

Some c&culations 

In  these calculations 

Fuel temperatures were then calculated by integrating the  hezt 

Figure A-8 shows r e su l t s  for  a channel where the * 

Sub- 

The entry of  the 1200°F fuel  behind the cold slug and the advance 

The temperature a t  the out le t  of the  channel i s  shown as a fbnction 

of time i n  Fig. A-9. 
drop as the leading edge of the cold slug arrives,  and the abrupt r i s e  as 

 he following fuel reaches the out le t  a re  prominent features.  

The heating 02; the  f lu id  ahead of the  cold slug, the  

Figwe A-9 also shows a curve fo r  t he  temperature a t  the vessel out;- 

The temperature here i s  approximated by the mixed mean of the  f1ui.d l e t .  

issaing from all the channels, dispLaced i n  time by the mean residence 

time i n  the upper head. The peak arid the break as  the interfaces pass 

would actual ly  be softened by the differences i n  t r a n s i t  times from various 

channel out le ts  t o  the vessel outlei;, 

* 
This r a t i o  would apply t o  the  central  channels i f  there  were no control. 

rods or thimbles, In the actual reactor the maximum value of t h i s  ratio 
w i l l  be s l igh t ly  lower because of the flux f la t tening resul t ing f'rom the 
poison near t he  core axis. 
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COMPOSITION OF RESIDUAL LIQUID AFTER PARTIAL 
FREEZING OF NSRE FUEL SALT 

'The compositicn of the  l iqu id  bhat  remains a f t e r  p a r t i a l  freezing cf 

the f i e 1  salt determines the nuclear behavior of the reactor during a 

Til l ing accidens. 

been made of the l iqu id  composition as a function of  the fract ion of salt  

I%ozen. 

ear ly  t o  permit the nuclear calculations t o  proceed. The second estimate, 

by XcDutffie _I- e t  aJ., w a s  based on greater knowledge of the  s a l t  properties. 

The assumptions and r e su l t s  of the two approaches are discussed below. 

Since t,he quantit ies of in te res t  i n  nuclear calculations a re  atmnic con- 

cen?xa%ions, the resul tant  compositions a re  presented i n  these terms. 

Two estimates, based on different  assumptions, have 

The f irst  estimate, based on very simple assumptions w a s  made 

Preliminary Estimate of Fuel Composition 

This estimate was  based on the following assumptions: 

1. I n i t i a l  salt  composition 

Component 

LIF 

BeF2 

a F 4  

ThF2 
m.4 

Mol Fraction 

0.70 

0.23 

0.05 

0.01 
0.01 

This composition leads t o  :t higher uranium concentration than 

i s  required for crit icali t ;T under normal conditions a t  1200 F. 

To correct for this, the  f i n a l  uranium concentrations were 

corrected downward by the U:Th r a t i o  i n  the c r i t i c a l  reactor.  

0 

2 .  Only the  primary solid, 6 LiF.BeFZ.ZrF4, appears as  the tem- 

perature i s  lowered and t h i s  continues .to form until. a l l  c f  

the  zirconium has been consumed. 

3 .  The density of the remaining melt i s  proportional. t o  i t s  

molecular weight with the  density of the i n i t i a l  cornposition 

fixcd at 1p*3 1bJrt3 a% 1200OF. 



Estimate by Ildckffie e t  al -- 
The following assumptions were used: 

1. I n i t i a l  salt composition 

Component 

LiF 

BeF2 
ZrF4 

ThF4 

uF4 

Mol Fraction 

0.70 

0 237 
o*o> 
0.01 

0.003 

The reduction i n  uranium concentration permits a smaller 
correction t o  make the  f i n a l  concentration compatible 

with c r i t i c a l i t y  results. The extra 0.007 mol f ract ion 

w a s  a r b i t r a r i l y  assigned t o  the  BeF2. 

2. The primary solid, 6 LiF.BeF2.ZrF4, forms u n t i l  t he  ZrF4 

mol fractiofi i s  reduced t o  0.033. After t h i s  the s x -  

~ n 3 - z ~ ~ -  solid,  2 Li3'.&F2, forms ir, 2 1:l mol r z t i o  With 

the  primary sol id .  

3. The salt density was  obtained by dividing t h e  molecular 
weight by the  sum of the  f'ractional molar volumes of t he  

consti tuents.  

values. 

However, application of t h e  method t o  the  standard (70-23- 

5-1-1) mixture leads t o  a density of 142.6 lb / f t3  a t  

1200°F as opposed t o  a measured value of 1$,3 lb/ f i3 .  

Since absolute densi t ies  are required f o r  t he  nuclear 

calculations, a correction of 1$.5/142.6 was applied t o  

all of the  calculated densi t ies .  

The molar volumes are empirically obtained 

An accuracy of  3$ i s  claimed for t h i s  technique. 

Comparison of Results 

Figure A-10 shows the  calculated atomic concentrations a t  1200°F re-  

sul t ing f romthe  two sets of assumptions. 

uranium concentrations a re  referred t o  t h e  same i n i t i a l  concentration--- 

that corresponding t o  0.003 mol f ract ion UF4. Xie only  s ignif icant  

For ease of comparison, both 

. 

W 
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J difference i n  the two methods i s  i n  the  zirconium concentration, 

t h i s  does not affect  the nuclear calculations because only lom4 of the  

neutron absorptions are i n  zirconium. 

However, 

APPENDIX v 
CRITICALITY CALCULATIONS FOR FILLING ACCIDENTS 

Multiplication constants were calculated with the a id  of MODRIC, a 

one-dimensional, multiregion, multigroup neutron diffusion code, fo r  all 

combinations of the  following variables: 
.*,. - 

H/L = 0.9, 0.75, LOO 

T = 1200, 1300, 140O0F 

where f i s  t h e  weight fraction of fuel  frozen. Additional calculations 

were made a t  H/L = 1.00, f = 0 and T = 1200, 1300, and 1400°F t o  provide 

a basis for  adjusting the r e su l t s  t o  agree with previous calculations. 

In all cases, the nominal atomic concentrations were adjusted for  changes 

&ue t o  the  var ia t ion of the fuel density w i t h  temperature; the coefficient 

of expansion of the normal fuel  was applied t o  all compositions. 

cross sections appropriate t o  the various temperatures were used. 

Nuclear 

fU1 of the  MODRIC results were t reated as nominal values, subject t o  

adjustment. 

was  set a t  1 .OO. 

0.9824, respectively, by applying the  previously calculated temperature 

coefficient of reac t iv i ty  (-8.8 x 10 F ). The r a t i o s  of these values 

t o  the nominal values gave normalization factors  t o  be applied a t  the  

vwious temperatures. 

The value of k for  the  core f i l l e d  with normal fuel  a t  1200'F 

The values a t  1300 and 1400°F were set a t  0.9912 and 

-5 0 -1 

An additional correction was  applied t o  each of the  calculated vd.ues, 

&cause of control-rod position during fi l l ing,  k = 0.997 for  t he  reactor 

full of norrnal fuel  a t  1200'F. However, the  worth of the  control rods 

varies with the salt leve l  i n  the core. Thus the correction which w a s  

applied was varied proportionately. 

1.200'~ fo r  t h e e  f i e 1  cmpositions. 

Figure A-11 shows the  net values of kerf as a f'unction of H/L a t  

These curves permit evaluation of 





tlhc c r i t i c a l  s a l t  l eve l  as  a function of composition (Fig. 7 ) .  
fec+,fve temperature coefficients of reac t iv i ty  were evaluated with the 

aid of similar curves a t  other temperatures. 

the %emperatme coefficient i s  only 6.3 x 10'50F'1. 

Tne ef- 

With 0.39 of the szlt 53?ozerL? 

A similar approach w a s  used for the postulated accident i n  which l'uel,, 
0 ccntaining suff ic ient  uranium for operation a t  1400 F, i s  added t o  the r e -  

a c t l a  a t  900 F. A cr i t ical .  uranium concentration was f i r s t  calculated ;:CY 

tne fW.1 core a t  1400°F. The atomic concentrations were then adJus5ed 4.c 

?OO°F and k w a s  calculated as a function of H/L. 

malized t o  k = 1.044 a t  H/L = 1, the value corresponding t o  a temperst%lu*e 

coefficient of 8.8 x 10"  OF'^ . 
w a s  a l so  applied. 

0 

These v a u e s  were mr- 

The correction for  control-rod posit5on 
Figure A-12 shows the  net keff as a W c t i o n  of H/L. 

In order t o  predict the power and temperature behavior of the core, 

iC was necessary t o  convert the curves of k 

'fs t i m e .  

Ctning f i l l i n g .  

mite of 1 .0  ft3/min a t  1200'F. 

vhich fuel  salt  begins t o  enter the  core i t s e l f .  

2% H/L = 0.8 i s  due t o  the effect, o f  the inlet volute and inlet, l i n e  on 

the reactor vessel. 

Fig, A-11 and A-12 t o  obtain the reac t iv i ty  curves from which power zind 
temperature were calculated. 

vs H/L i n to  curves of k e f f  - e 2f 
This conversion was based on the variation of H/L w i t h  time 

Figure A - 1 3  shows H/L as a function of time for  a -EX11 

Zero time on t h i s  curve i s  the  time a t  

The change of slope 

Figure A-13 was then combined with the curves Cj? 
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APPENDIX V I  

REACTIVITY WORTH OF INCREME%TS OF URANIUM 

The increase i n  reac t iv i ty  which would be produced by the addi:-“-,r r f  

a s m a l l  amount of  nranium a t  some point i n  the core, which i s  inir,rca-.iy 

critical, i s  a quantity of i n t e re s t  i n  the analysis of the r e a c % x .  B:-E 

TJantity was used t o  calculate an upper l i m i t  on the upset wnLch c iu ld  ?;E 

poduced by the  rapid addition of fuel  i n  such a way t h a t  the care  

ccncentra+,ion increased nonuniformly. 

Reactivity worth of uranium as a f’unction of position was ca1cid.a+,.?d 

Cr i t i ca l i t y  calcula+,ions by MODRIC showed tha t  a t  12OOcP s’r? as fellows: 

c r r e  critical mass i s  16.2 kg U235 and (6k/k)/(6M/M) = 0.28. 

1 g TJ23cJ evenly dis t r ibuted i n  the core, 6k/k = 1.72 x lom5* 
sicw ne.itron fl1jxes and adjoints have been computed by EQUIPOISE-3. ‘I?-cE: 

prr-lduet of the f a s t  adjoint and the slow flux a t  a point was used as Yic- 

measure of the nuclear impcrtance of t ha t  point. Thus for  1 g it‘ 

pasixion r ,z 

Thss -f:r 

Fas*., ac,d 

2 3  5 Pfgdre A-14 shows the reac t iv i ty  effect  of an increment ef 1 g t 
i>arzctiori of poslt ion i n  the  core. 

ELF 

I n  the  analysis of the me1 addition, it w a s  postiLa-Led +,ha; %+ P . 2  

e:rlcen”,ation w a s  uniform except fo:: a f l a t  “pancake” consa1r1Z’1g a.c~ afi- 

d24iosai 120 g U233 which moved up through the core. 

or h p w t a n c e  of urani-om evenly dis t r ibuted over a horizontal p l w e  ELI :: 

The reacC,2.vF:..y f’c . ? 

2 s  

%is integration was carried out graphically fo r  the values of z sks% 

Sn Fig. A-14. 
reactfvPty e f fec t  of an increment of 120 g U235, evenly distribu4ed :--i 

a horkscmtal. plane moving through the core a t  the  average speed c+P .t81.f 

c i r x L z E A r g  P,el. 

The r e su l t s  were used t o  obtain Fig. A-152 which shcm *,h? 
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