
3445605487463
ITIONALIABORATORY

अuralday.

Unichemambiblemerporatlon
\{ $\}$
K $\beta \& \&\}\}\}$

(

S
\&

荡

LEGAL NOTICE

This report was prepored as an decount of Govermment aponsored work. Neither the United Swates nor the Commixsion, nor any person acting on behalf of the Commission:
A. Makes ony warraniy or representation, expressed or implied, with respect to the octurocy, complerenest, or usefultess of the information contained in this roport, af that the use of any information, apparotus, method, or precess discfosed in this report may not inftinge privately awned rights; or
8. Astumes ony liabilities with respect to the use of or for danoges resulting from the use of any information, apparatus, niethod, or procass disclosed in this ruport,
As used in the above, "person seting on betorlf of the Commission" includet any emplaye of zontractor of the Commission, remployen of such contractor, to the oxtent that sueh smployede or contractor of tha Commission, or employes of such contractor prepores, disseminates, or providas acesss to any infortation pursuant to his mplayment or contract with the Commission, or his employment with such contractor.

576 Mwt Natural Convection
 Molten Salt Reactor Study

Introduction

Studies have been made $(1,2)$ of molten salt natural convection reactors of 5 Mw and 60 wr thermal output. The following stuay of a 576 natural convection reactor was made to compare with the family of large molten salt reactors being presentiy studied.

The chief purpose of this study is to determine the approximate size of the components and fuel volume of the fuel circuit of a 576 Mw natural convection moltea salt reactor.

Riser Calculations

For the purpose of this study a rather simple configuration of reactor, heat exchanger, and piping was chosen as shown in Fig. I. All calculations were done on the basis of one heat exchanger and one set of risers and dowcomers. Since the frictional losses in the piping are determined primarily by the expansion and contraction losses and are insentitive to wall friction, the single riser can be replaced by a number of risers having the same height. and total cross sections. Likewise, the heat exchanger can be replaced by a number of heat exchangers having the same length of tubes and total number of tubes.

The following expression was derived for the height of the riser (see Appendix A).

$$
H=\frac{\Delta \mathrm{P} \Delta t^{2} D^{5}+8 h_{1} D \frac{Q^{2}}{\operatorname{sp\pi }^{2} C_{p}^{2}}+81 t \frac{Q^{2}}{\operatorname{gPr}^{2} C_{p}^{2}}}{\alpha \Delta t D^{5}-16 \mathrm{E} \frac{Q^{2}}{g \rho \pi^{2} C_{p}^{2}}}
$$

Riser Calculations (continued)

Where: $H=$ neight of riser - ft (see Fig. I)
$\Delta P=$ pressure drop in heat exchanger $-1 b / f t^{2}$
$\Delta_{t}=$ temperature drop in heat exchanger ${ }^{O_{F}}$.
$D=$ diameter of riser - ft.
$h_{1}=$ loss due to el's, exit and ent of reactor, exit and ent of heat exchanger - 1.6 velocity heads.
$Q=$ power output $-546,000 \mathrm{Btw} / \mathrm{sec}$
$g=$ accel. of gravity - $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$C_{p}=$ specific heat $-0.52 \mathrm{Btu} / \mathrm{Ib}-\mathrm{O}_{\mathrm{F}}$
$x=20 \mathrm{ft}$ (see Fig. I)
$f=$ friction factor $=.02$
$\alpha=$ temperature coefficient of density $-0.0121 \mathrm{Ib} / \mathrm{ft}^{3}-{ }^{o_{F}}$
$\rho=$ density of fuel $=123 \mathrm{lb} / \mathrm{ft}^{3}$

For an eight foot diameter reactor the volume of the piping will be

$$
V_{p}=\frac{\pi}{4} D^{2}(2 H+20-8)
$$

for each value of ΔP and Δ_{t} this volume will be a minimum at some value of D and H .

Fig. II is a plot of piping volume versus riser height for $\Delta t=200^{\circ}$ and values of $\Delta \rho$ of $10,20,30,40$, and $5010 / \mathrm{ft}^{2}$. Similar plots were made for $\Delta t=175^{\circ}, 225^{\circ}, 250^{\circ}$. The minimum values of piping volume and the associated riser heights and diameters are plotted against heat exctianger pres sure drop in Figs. III and IV.

Heat Exchanger Calculations

On the basis that the heat exchanger is of the counterflow tube and shell design with the fuel in the tubes and that the Nusselt number over the range

Heat Exchanger Calculations (continued

investigated is constant and equal to $4^{(3)}$, we derive the following relationships (see Appendix B).

$$
\begin{aligned}
& \mathrm{LN}=\frac{286.5 \mathrm{Q}}{\mathrm{~K} \mathrm{\Delta t}} \\
& \mathrm{~N}=\frac{2}{\pi c_{\mathrm{p}} \Delta \mathrm{ta}^{2}} \\
&\left(\frac{32 c_{\mathrm{p}} \mu \frac{\Delta t}{t_{\mathrm{a}}}+12 \mathrm{~K}}{\operatorname{goK} \Delta P}\right)^{1 / 2}
\end{aligned}
$$

The volume of the heat exchanger is:

$$
\begin{aligned}
V_{\text {HE }} & =V_{\text {tubes }}+V_{\text {Header }} \\
& =\frac{\pi}{4} d^{2} L N+\frac{(1.5 d)^{2} 3 \mathrm{~N}}{2}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \mathrm{L}=\text { length of tube - ft } \\
& N=\text { number of tubes } \\
& K=\text { thermal conductivity of fuel. } 3.5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{{ }^{\circ} \mathrm{F}} \\
& \Delta t=\text { temperature drop in heat exchanger. }{ }^{\circ} \mathrm{F} \\
& \Delta t_{a}=\text { average temperature differential. } \circ_{F} \\
& d=\text { tube inside dis. }-.05 \mathrm{ft} . \frac{8062}{460} \\
& \mu=\text { viscosity of fuel }=0.174 e^{\overline{O F}=460} \mathrm{lb} / \mathrm{hr}-\mathrm{ft} \\
& Q=\text { heat output. Btu/sec } \\
& C_{p}=\text { specific heat of fuel. Btu/lb }-O_{F} \\
& \stackrel{p}{\rho}=\text { density of fuel }=123 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

From this we can calculate L, N, and heat exchanger volume against neat exchanger pressure drop for different Δt 's. The temperatures used were: fuel entering the heat exchanger at $1210^{\circ} \mathrm{F}$ and leaving at $960^{\circ} \mathrm{F}$ to $1035^{\circ} \mathrm{F}$. The wall temperature was taken as going from 850° to 1050°, giving the following temperature conditions:

Heat Exchanger Calculations (continued)

Fuel Exit.	Δt	Δt_{a}	$\frac{\Delta t}{\Delta t_{a}}$
Tempereture			
1035	175	172.5	1.014
1010	200	160.0	1.250
985	225	147.5	1.525
960	250	135.0	1.852

The total volume of the system is equal to the volume of the pipiag plus the volume of the heat exchanger plus $300 \mathrm{ft}^{3}$ for the reactor and expansion tank. Fig. Vplots riser diameter, heat exchanger tube length and number of tubes, and total volume of the system againat riser height.

Discuseion

On the basis of this preliminary investigation, large natural convection reactors do not seem to be very attractive. The elimination of fuel pumps seems to be more than balanced by the increase in ruel volume, and number of heat exchanger tubes although it is possible that the large number of heat exchanger tubes can be reduced by using fuel outside of fimed tubes. An investigation into the cost of various molten salt reactor types ${ }^{(4)}$ shows the cost of a natural convection reabtor to be higher than comparable forced fuel circulation systems.

References

1. Romie, F. E. and Kinyon, B. W., "A Molten Salt Natural Convection Reactor System", ORML-CF 58-2-46
2. Zasler, J., "Experimental 5 Mw Thermal Convection Molten Salt Reactor", ORNL-CF 58-6-66
3. McAdams, W.H., "Heat Transmission", McGraw-Hill Book Co., Inc., 3 ra Ed. (1954), pp. 229-239
4. Whitman, G. D., "Molten Salt Reactor Cost Stuay", ORML-CF 58-8-50

Appendix A

Hystrostatic head for flow $=\frac{\alpha \Delta_{\text {tH }}}{\rho}$
Friction loss in piping $\quad=\frac{I^{1}}{D} \frac{V^{2}}{2 g}+h_{1} \frac{V^{2}}{2 g}+n_{e}$
Where: $\quad I^{\prime}=2 \mathrm{H}+1$

$$
V=\frac{4 Q}{\pi \rho C_{p} \triangle t D^{2}}
$$

$$
\Delta p=h_{e} \rho
$$

$$
\alpha \Delta t A=\frac{16 q^{2}}{2 g \pi^{2} \rho C_{p}^{2} \Delta t^{2} D^{4}}\left(\frac{2 f H}{D}+\frac{\mathrm{fI}}{D}+h_{2}\right)+\Delta p
$$

$$
\begin{array}{r}
\Delta p \Delta t^{2} D^{5}+8 h_{1} D\left(\frac{Q^{2}}{\operatorname{gar}^{2} c_{p}^{2}}\right)+81 f \frac{Q^{2}}{\operatorname{Ror}^{2} c_{p}^{2}} \\
\alpha \Delta r^{3} D^{5}-16 f\left(\frac{Q^{2}}{\operatorname{san}^{2} c_{p}^{2}}\right)
\end{array}
$$

Append 1× B

$\frac{\mathrm{b}_{\mathrm{a}}}{\mathrm{K}}=4$
$q=W C_{p} \Delta t=h_{a} \pi d L \Delta t_{a}$
$h_{a} a=\frac{W C_{p} \Delta t}{\pi I \Delta t_{a}}=4 K$
Where:

Where:

$$
\begin{aligned}
& r=\frac{4 Q_{1}}{\pi N \rho d^{2} C_{p} \Delta t} \\
& h_{x} \rho=\Delta p=\frac{4 \times 64 \times \frac{\mu}{3600} Q L_{1}}{2 g \pi N \rho d^{4} C_{p} \Delta t}+\frac{1 \cdot 5 \times 16 Q^{2}}{2 g \pi^{2} N^{2} \rho d^{4} c_{p}^{2} \Delta t^{2}}
\end{aligned}
$$

$$
L N=\frac{\operatorname{sp\pi }^{2} c_{p}^{2} \Delta t^{2} H^{2} d^{4} \Delta P-12 Q^{2}}{128 \pi c_{p} \Delta t \frac{\mu}{3600} Q}=\frac{3600 Q}{4 \pi K \Delta Q_{a}}
$$

$$
\begin{aligned}
& W=10 / \mathrm{hr} \text { per tube }=\frac{3600 Q}{\mathrm{BC}_{\mathrm{p}} \Delta t} \\
& \frac{3600 Q}{\pi \operatorname{LNK} \Delta t_{a}}=4 \\
& \mathrm{LN}=\frac{286.5 Q}{\Delta \Delta t_{\mathrm{a}}} \\
& \text { head loss in heat exchanger }-h_{x}=\frac{64 \frac{\mu}{3600} v L}{.2 \mathrm{gpd}^{2}}+1.5 \frac{v^{2}}{2 g}
\end{aligned}
$$

Appendix B (continued)

$$
\mathrm{N}=\frac{\mathrm{Q}}{\pi \cos \Delta t d^{2}}\left(\frac{32 \mathrm{c}_{\mathrm{p}} \mu \frac{\Delta t}{\Delta t}+12 \mathrm{~K}}{\operatorname{s\rho K} \Delta_{\mathrm{a}}}\right)^{1 / 2}
$$

- Fig. I -

Distribution
1-3. DTIE, AEC
4. M. J. Skinner

