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any information, opporatus, method, or process disclosed in  this report may not infringe 

privately owned rights; or 
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MSRE NEUTRON SOURCE R E Q U I W T S  

J. R .  Engel, P. N.  Haubenreich and B.  E. Prince 

The alpha-n source inherent i n  the  f u e l  sa l t  meets 
a l l  the  safe ty  requirements f o r  a neutron source i n  the 
Msm. 

Subcr i t i ca l  f l ux  d i s t r ibu t ions  were ca lcu la ted  t o  
determine the  combination of  ex terna l  source s t rength  and 
de tec to r  s e n s i t i v i t y  required f o r  monitoring the r e a c t i v i t y .  
I f  more sens i t i ve  de tec tors  than the servo-driven f i s s i o n  
chambers a r e  i n s t a l l e d  i n  the instrument shaft  to monitor 
the  f i l l i n g  operation, the  ca lcu la t ions  ind ica te  t ha t  t he  
required source s t rength  can be reduced from 4 x lo7 n/sec 
t o  7 x lo6 n/sec.  
i n i t i a l  s t rength  of 4 x lo8 n/sec would s t i l l  produce 
7 x 10' n/sec one year  a f t e r  i n s t a l l a t i o n .  

An antimony-beryllium source with an 

Because there  i s  considerable uncer ta in ty  i n  the  
ca lcu la ted  f luxes,  the  f i n a l  spec i f i ca t ion  of source and 
type should be made a f t e r  preliminary f lux  measurements 
have been made i n  the  reac tor .  

LNTllOilUC'I'J (JN 

Some source of neutrons tha t  i s  independent of  the  f i s s i o n  chain 

reac t ion  i s  e s s e n t i a l  t o  the  safe and order ly  operation of the  MSm. 
The primary requirement f o r  such a source i s  t o  insure t h a t  when- 

ever  t he  reac tor  i s  s u b c r i t i c a l ,  the  neutron population i n  the reac tor  

i s  s t i l l  high enough t h a t  i n  any conceivable r e a c t i v i t y  excursion the 

inherent shutdown mechanisms and t he  ac t ion  of t he  sa fe ty  system become 

e f f ec t ive  i n  t i m e  t o  prevent damaging power and temperature excursions. 

Besides the  sa fe ty  requirements f o r  a source, there  i s  another, 

r e l a t ed  t o  the  convenient and order ly  operation of t he  reac tor .  

i s  t h a t  t he  neutron f lux  a t  the  de tec tors  be high enough t h a t  the  

f i s s i o n  chain react ion i n  the  core can be monitored a t  a l l  t i m e s .  The 

source s t rength  required f o r  t h i s  purpose depends on the  experiment 

This 



being conducted o r  t h e  condition of t h e  r eac to r  and t h e  loca t ion  and 

s e n s i t i v i t y  of t he  de tec tors .  

This report  descr ibes  t h e  conditions t h a t  w i l l  e x i s t  i n  t h e  MSRE 

during t h e  i n i t i a l  c r i t i c a l  experiment and during subsequent s t a r tups ,  

both before and a f t e r  extended operat ion a t  power. 

ments f o r  t h e  various conditions a r e  described and t h e  ex ten t  t o  which 

these  a r e  s a t i s f i e d  by the  inherent ,  i n t e r n a l  sources i s  discussed. 

The requirements f o r  an ex terna l  source t o  supplement t h e  inherent  

source are analyzed and recommendations are made f o r  an  ex terna l  

source and mode of s t a r t u p  operat ion t h a t  s a t i s f y  t h e  requirements 

i n  a reasonable fashion.  

The source require-  

INTERNAL SOURCE 

The f u e l  salt  i t s e l f  provides a subs t an t i a l  source of neutrons 

i n  t h i s  r e a c t 0 r . l  

i n t e r n a l  source i s  from the  alpha-n reac t ions  of uranium alpha 

p a r t i c l e s  with t h e  f luo r ine  and beryll ium i n  t h e  sa l t .  

spontaneous f i s s i o n  of t h e  uranium add t o  t h e  i n t e r n a l  source but  t h i s  

cont r ibu t ion  i s  much smaller than t h e  alpha-n cont r ibu t ion .  

I n  the  clean f u e l  the l a r g e s t  cont r ibu t ion  t o  the 

Neutrons from 

The uranium i n  t h e  f u e l  salt i s  a mixture of four  isotopes,  

U234, U235, U236, and U238; t he  proportions depend on t h e  choice of 

f u e l  t o  be used i n  t h e  r eac to r .  Table 1 gives the  compositions of 

t h ree  mixtures t h a t  have been considered, along with t h e  i so top ic  

composition of t h e  uranium i n  each. 

undergo alpha decay and any of t h e  uranium alphas can i n t e r a c t  with 

t h e  f luo r ine  and beryll ium i n  t h e  salt  t o  produce neutrons.  The 

more energe t ic  of t h e  alpha p a r t i c l e s  can a l s o  produce neu- 

t rons  by i n t e r a c t i o n  with l i thium, but t h e  y i e l d  i s  neglegible  i n  

comparison with t h a t  from f luo r ine  and beryll ium. Table 2 gives 

t h e  neutron source i n  t h e  core due t o  t h e  var ious uranium isotopes 

A l l  of t h e  uranium isotopes 

'P. N. Haubenreich, "Inherent Neutron Sources i n  Clean MSRE Fuel  

S a l t , "  USAEC report  ORNL-TM-611, Oak Ridge National Laboratory, 

August 27, 1963. V 
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* Table 1 Composition of MSRF: Fuel S a l t  Mixtures 

Fuel Type A B C 

Composition"(mo1e %) 
LiFb 70 
BeF2 23.7 
Z rF4 5 
ThF4 1 
m4 0.3 

Uranium Isotopic  
Composition (Atom %) 

u234 
3 3 5  
336 
338 

1 
93 
1 
5 

a 

b 
Clean, c r i t i c a l  condition. 

99.9926% Li7, 0.0074% ~i~ 

67 
29 

3 -8 
0 
0.2 

1 
93 
1 
5 

65 
29.2 
5 
0 
0.8 

c 

Table 2 Inherent Neutron Source i n  Clean MSRF: Fuela 

Fuel Type A B C 

a ,  n Source 

u236 
u=8 

Tot a1 

sou 

4.3 x 
9.2 x 
3.2 x 

2 
.rce 

40 

4.6 x 

io5 
io3 
lo3 

io5 

3.1 x io5 
6.4 x io3 
2.3 x io3 

4 

23 
3.2 x io5 

3.8 x io5 
9.9 x io3 
2.8 x io3 
2 . 0  x lo2 

2 .4  x lo2 
3.9 x io5 

a"Effective" core, containing 25 f t3  of f u e l  
c r i t i c a l  concentration. 

sa l t  of clean 
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f o r  the  clean, c r i t i c a l  loading with the  three  d i f f e r e n t  fue l s .  

About 97% of the  alpha-n neutrons are produced by alpha p a r t i c l e s  

from $34; thus,  t h i s  source i s  proport ional  t o  the  amount of $34 

i n  the  f u e l .  

The most ac t ive  of the  ava i lab le  uranium isotopes from the  

standpoint of spontaneous f i s s i o n  i s  $38 . 
which contains a much l a r g e r  proportion of $38 than the  o ther  two 

mixtures, has a subs t an t i a l ly  l a r g e r  source of neutrons from 

spontaneous f i s s i p n .  The inherent  neutron source from spontaneous 

f i s s i o n  i s  l i s t ed  i n  Table 2 f o r  each of t he  three  f u e l  salt  mixtures. 

The E R E  w i l l  operate f i r s t  with Fuel C ,  and the  i n i t i a l  c r i t i c a l  

As  a r e s u l t ,  Fuel C ,  

experiment w i l l  cons is t  of adding f u l l y  enriched uranium t o  a sal t  

a l ready containing depleted uranium t o  br ing the  composition up t o  

t h a t  shown i n  Table 1. A t  the  beginning of the  c r i t i c a l  experiment 

the sal t  w i l l  contain 97% of the  'if!38 but  only about 0.7% of the  $34 

and $35 i n  the  c r i t i c a l  loading. 

f i s s i o n  source i n  the  core a t  t h i s  po in t  w i l l  be about 2 x lo3 n/sec.  

The combined alpha-n and spontaneous 

Af te r  the  MSFE has been operated a t  high power, the  f u e l  w i l l  

produce a s ign i f i can t  number of photoneutrons from the  in t e rac t ion  of 

fission-product decay gammas with beryll ium. 

energy f o r  t h i s  source i s  1.67 Mev, so t h i s  type of source i s  

in s ign i f i can t  before operat ion when only the  uranium decay gammas 

a r e  present .  Since the  concentrations of f i s s i o n  products and 

beryll ium do not vary widely with the  choice of  fue l ,  t he  photoneutron 

source i s  approximately the  same f o r  a l l  t h ree  f u e l s .  Figures 1 and 2 

show the  r a t e  of photoneutron production i n  the  MSRE core a f t e r  operation 

a t  10 Mw f o r  periods of 1 day, 1 week, and 1 month. The source i s  

proport ional  t o  the  power, and the  source a f t e r  periods of non-uniform 

power operation can be estimated by superposit ion of sources produced 

by equivalent blocks of steady-power operat ion.  

The threshold photon 

Y 
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Fig. 1. Photoneutron Source i n  MSRE Core Short ly  After  Various 
Periods a t  10 M w .  
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TIME AFrm S" (days) 

Fig. 2 .  Photoneutron Source i n  MSRE Core After  Various Periods 
at 10 M w .  
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v The gamma-ray source used i n  the ca lcu la t ions  i s  group I V  of Blomeke 

and Todd,2 which includes a l l  gamma rays above 1.70 Mev. The probabi l i ty  

of one of these  gamma rays producing a photoneutron w a s  approximated by 

the  r a t i o  of the  Be9 ( 7 ,  n )  cross sec t ion  t o  the  t o t a l  cross sec t ion  f o r  

gamma ray in t e rac t ion  i n  a homogeneous mixture with the  composition of 

the  core.  A Be 

used,3 and the  t o t a l  cross sect ion w a s  evaluated a t  2 Mev. 

t i ons  lead t o  a conservatively low estimate of neutron source s t rength .  

9 (7, n )  microscopic cross sec t ion  of 0 .5  mil l ibarns  w a s  

These assump- 

PROVISION FOR EX'I'ERNAI, SOURCE 

For reasons which w i l l  be discussed l a t e r ,  it i s  des i rab le  t o  supple- 

ment t he  inherent i n t e r n a l  source with a removable source.  Therefore a 

thimble i s  provided i n  the thermal sh ie ld ,  on the  opposite s ide  of the  

reac tor  from the  nuclear  instrument s h a f t .  

sch.  40 pipe of 304 s t a i n l e s s  s t e e l ,  extending v e r t i c a l l y  down t o  about 

2 f t  below the midplane of  the core.  It i s  mounted as close as poss ib le  

t o  the  inner  surface of the  thermal sh i e ld  f o r  maximum ef fec t iveness .  

Location o f  the  source thimble i n  the  thermal sh i e ld  provides water cooling 

and avoids the  high temperatures associated with the  reac tor .  

The thimble i s  a 1-1/2 inch, 

A l l  the  permanently-installed core- neutron de tec t ing  instruments a r e  

located i n  the  nuclear instrument s h a f t .  This i s  a water - f i l l ed ,  3 f t -  

diameter tube which slopes down t o  the  inner  surface o f  the thermal sh i e ld  

with separate  inner  tubes f o r  the  various chambers. Among the  permanent 

instruments i n  t h i s  tube a re  two servo-posit ioned f i s s i o n  chambers which 

w i l l  be used t o  monitor rout ine s t a r tups  as wel l  as t o  record the  e n t i r e  

power range of t he  reac tor .  These chambers a r e  about 1 i n .  i n  diameter 

J. 0. Blomeke and M. F. Todd, "Uranium-235 Fission-Product Production 2 

as a Function of Thermal Neutron Flux, I r r a d i a t i o n  Time, and Decay Time," 
USAEC Report ORNL-2127, Oak Ridge National Laboratory, August 1957. 

3See curve i n  Reactor Handbook, 2nd Edi t ion,  Vol. I11 B "Shielding", 
E .  P. Bl izard,  Ed . ,  p .  23 ( In te rsc ience ,  New York, 1962). 



by 6 i n .  long and have a r a the r  low counting e f f i c i ency  of 0.026 counts 

p e r  neutron/cm . 
the  source requirement are 2 compensated ion chambers and 3 uncompensated 

sa fe ty  chambers.) 

2 (Other  chambers i n  the  tube which have no bearing on 

Two v e r t i c a l  thimbles, similar t o  the  source thimble but made of 

2 i n .  sch.  10 pipe,  a r e  i n s t a l l e d  i n  the thermal s h i e l d  to accomodate 

temporary de t ec to r s .  

from the  source thimble, one on e i t h e r  s ide  of the permanent nuclear  

instrument s h a f t .  The advantage of these v e r t i c a l  thimbles i s  t h a t  they 

place the  e n t i r e  length of a chamber close t o  the  inner  surface of the  

thermal sh ie ld ,  whereas a long chamber i n  the  s loping instrument sha f t  

would extend back i n t o  a lower -f lux region and thus be exposed t o  a 

lower average f lux .  

The two de tec tor  thimbles are located 120" and 170' 

I n  addi t ion t o  these provisions,  there  a r e  spare tubes i n  the nuclear 

instrument shaft  which could accomodate addi t iona l  de t ec to r s .  

In  planning the  use of source and de tec tors  i n  reac tor  experiments 

and operation, an important quant i ty  i s  the r a t i o  of counting r a t e  t o  

source s t rength  under various condi t ions.  The counting r a t e  i s  the  pro- 

duct of the  counting e f f i c i ency  of the  chamber and the  average f lux  t o  

which the chamber i s  exposed. The f l u x  a t  the  chamber depends on the  

source-its s t rength,  the  energy of  i t s  neutrons, and, i n  the  case of 

an externa l  source, i t s  loca t ion .  The f lux  a l s o  depends on the  amount 

of mul t ip l ica t ion  by f i s s i o n s  and t h e  shape of t he  neutron f lux  d i s t r i -  

bution i n  the  core,  which i s  determined by the  loca t ion  of the  source 

and the  value of k i n  the  core .  

The f lux  d i s t r ibu t ions  i n  and around the  reac tor  have been ca lcu la ted  

f o r  severa l  d i f f e r e n t  cases t o  provide a basis f o r  planning f o r  t he  source 

and de tec tors .  Many approximations had t o  be made t o  render the  computa- 

t i ons  manageable and consequently the  probabLe e r r o r  i n  the  r e s u l t s  i s  

qu i t e  la rge ,  perhaps as much as a f a c t o r  of t en .  Unless s p e c i f i c a l l y  

s t a t e d  otherwise, the fluxes and source s t rength  requirements described 

i n  this report  do not  contain any allowance f o r  probable e r r o r .  



Flux Due t o  In t e rna l  Source 

With an in t e rna l ,  d i s t r ibu ted  source of S n/sec i n  the  core, the  i n  
s teady-s ta te  production r a t e  w i l l  be approximately S .  /(1 - k ) n/sec. i n  e f f  
The f lux  a t  any poin t  i s  then 

1 3  i n  i n  ' = (1 - knPP) 

The f a c t o r  fin f o r  a given loca t ion  depends on the  shape of the  f lux .  For 

a f l a t  source and low mul t ip l ica t ion ,  fin a t  an ex terna l  de t ec to r  would be 

somewhat higher than a t  high mul t ip l ica t ion ,  when neutrons a re ,  on the 

average, produced nearer  t o  the  center  of the  core.  

When the  mul t ip l ica t ion  i s  high, i . e . ,  when (1 - keff )  i s  qu i t e  s m a l l ,  

most of the  neutrons a r e  produced by f i s s ions  i n  the core, with a s p a t i a l  

source d i s t r i b u t i o n  close t o  the  f i s s i o n  d i s t r i b u t i o n  i n  a c r i t i c a l  reac tor .  

The r e l a t i o n  between the  core power, o r  f i s s i o n  r a t e ,  i n  the c r i t i c a l  core 

and the  f lux  i n  the  thermal sh i e ld  w a s  calculated i n  the course of the  

thermal sh i e ld  design, using DSN,4 a multigroup, t ransport- theory code. 

For the  case of a thick,  wa te r - f i l l ed  thermal sh ie ld ,  when the  core power 

i s  10 Mw, t he  predicted thermal neutron f lux  reaches a peak, 1 inch ins ide  

the w a t e r ,  of 1 .2  x 1OI2 n/cm2-sec. 

thus 1 .2  x lo5 n/cm2-sec pe r  w a t t ,  o r  1.5 x lom6 n/cm2-sec pe r  n/sec pro- 

duced i n  the core. 
insertion in the instrument shaft would be exposed to an average flux of 

roughly 1 x A chamber 26 i n .  long i n  

the  instrument sha f t  would see an average f lux  only a t h i r d  as high because 

the  sha f t  slopes away from the  core.  The f lux  i n  one of the  v e r t i c a l  

thimbles near the  inner  w a l l  of the  thermal sh i e ld  would be about 3 x 

n/cm2-sec p e r  n/sec produced. 

1 x 3 x and 3 x f o r  a 6- in .  chamber i n  the sha f t ,  a 

26-in chamber i n  the  sha f t  and any chamber i n  a thimble, respect ively.  

The r a t i o  of peak f lux  t o  power i s  

It was estimated t h a t  a chamber, 6 i n .  long, a t  maximum 

n/crn"-sec p e r  n/sec produced. 

Thus as keff approaches uni ty ,  fin approaches 

4B. Carlson, C .  Lee, and J. Worlton, "The DSN and TDC Neutron T r a n s -  
p o r t  Codes, '' USAEC Report LAMS-2346, Los Alamos S c i e n t i f i c  Laboratory, 
February 1960. 
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Flux Due t o  External Source 

If a la rge  f r ac t ion  of the neutrons come from an ex te rna l  source, the  

f lux  shape w i l l  d i f f e r  markedly from the  c r i t i c a l  shape. 

i n  the s u b c r i t i c a l  reac tor  with a s t rong ex terna l  source were computed by 

a two-group neutron d i f fus ion  method. Equipoise Burnout, a two-group, 

two-dimensional diffusion-theory program w a s  used. The reac tor  w a s  rep- 

resented by a model i n  which the  cross  sec t ion  of the  reac tor  and thermal 

sh i e ld  a t  the  midplane of the  core w a s  approximated i n  x-y geometry and 

the  axial  leakage w a s  represented by an equivalent buckling. 

t o  make the  annular gap between the  reac tor  and thermal sh i e ld  manageable 

by the  d i f fus ion  program, the mater ia ls  i n  the  gap ( e l e c t r i c  heaters ,  

hea te r  thimbles, insu la t ion ,  and insu la t ion  cladding) were uniformly 

dispersed i n  i t .  The source w a s  represented by a loca l ized  neutron- 

producing region j u s t  ins ide  the  thermal sh ie ld .6  Two-group fluxes were 

calculated by t h i s  method f o r  two cases -wi th  no f u e l  sa l t  i n  the  core 

e f f  and with the core f i l l e d  with sal t  containing enough 335 t o  give a k 

of 0.91 (about 0.76 of t he  c r i t i c a l  concentrat ion) .  

Flux d i s t r ibu t ions  

I n  order  

Although the  neutron de tec tors  respond pr imari ly  t o  thermal neutrons, 

it i s  enlightening t o  look a t  the f a s t  neutron d i s t r i b u t i o n s  because most 

of the  thermal neutrons reach the  v i c i n i t y  of the  de tec tor  as fas t  neutrons 

and a re  slowed down l o c a l l y .  

one neutron from the  ex terna l  source) a t  the  core midplane along a diameter 

which in te rcepts  the  loca t ions  of the neutron source and the  f i s s i o n  

chambers. With no f u e l  i n  the reac tor ,  the fast  f l u x  w a s  higher i n  the 

gap between the  reac tor  and thermal sh ie ld ,  on the opposite s ide  of the  

reac tor  from the source, than i n  e i t h e r  of  the  immediately adjacent 

regions.  This implies t h a t ,  under these conditions,  most of the  fast 

neutrons t h a t  reached the v i c i n i t y  of the  f i s s i o n  chambers a r r ived  by way 

of the annular gap and t h a t  very few were t ransmit ted through the  core.  

Figure 3 shows the fast  f lux  (normalized t o  

5D. R. Vondy and T. B. Fowler, "Equipoise Burnout: 

6A discussion of the ca l cu la t iona l  procedure i s  given i n  the  appendix. 

A Reactor Depletion 
Code, USAEC Report, O a k  Ridge National Laboratory, ( i n  prepara t ion) .  
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Fig. 3 .  Fast Flux P r o f i l e s  at Midplane of MSRE Core Along a 
Diameter Through the External Source. 
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The addi t ion of f u e l  t o  the  core increased the  f a s t  neutron source by 

adding f i s s i o n  neutrons and leakage of some of these neutrons from the 

core ra i sed  the  fast f lux  near  the f i s s i o n  chambers by a f a c t o r  of 3 .  
The fast f luxes on the  source s ide  of the reac tor  vesse l  were not  af- 

fec ted  by the  addi t ion of f u e l  a t  t h i s  concentration. 

t h a t  the  ex terna l  source w a s  s t rong enough t h a t  i n t e r n a l  non-fission 

sources were negl ig ib le  i n  comparison). 

(It w a s  assumed 

Figures 4 and 5 show p a r t s  of severa l  thermal f lux  contours a t  the 

core midplane with no f u e l  salt  i n  the  reac tor  (Fig.  4)  and with sal t  

containing 0.76 of the c r i t i c a l  ?35 concentration (Fig.  5 ) .  
l i n e s  a re  superimposed on scaled drawings of the  reac tor  model used i n  

the  ca lcu la t ions  and the r e l a t i v e  pos i t ions  of t he  ex te rna l  source and 

the neutron de tec tors  a re  indicated.  

The contour 

Table 3 gives the  r a t i o  of the  thermal neutron f lux  a t  a chamber t o  

the  ex terna l  source s t rength .  I n  the cases of  t he  120° and 150' v e r t i c a l  

thimble loca t ions  the  f lux  i s  t h a t  a t  the center  o f  the thimble. For the  

tubes i n  the instrument sha f t ,  which slope away from the  reac tor ,  t he  

average f l u x  seen by a chamber depends on i t s  length.  

Comparison of  the  two f igures  and the  numbers i n  the t a b l e  shows 

qu i t e  c l e a r l y  t h a t  the  thermal neutron f lux  i n  the  gap and i n  the  thermal 

sh ie ld ,  f o r  8 considerable dis tance from the source, i s  highly in sens i t i ve  

t o  conditions i n  the  core .  A s  a r e s u l t  the counting r a t e  of  a chamber 

i n  the 120" thimble i s  a much poorer ind ica t ion  of changes i n  the core 

than i s  the counting r a t e  of a chamber i n  the instrument sha f t .  

Effect  of kOft  on Flux 

and keff  An approximate r e l a t i o n  between the  f lux ,  o r  counting rate, 

can be obtained by in te rpola t ion  of the  r e s u l t s  ca lcu la ted  f o r  k of 

0, 0.91 and 1.0. 
e f f  

The manner i n  which the  f lux  va r i e s  with k can be approximated e f f  
i n  the following way. Represent t h e  f lux  a t  a p a r t i c u l a r  loca t ion  by 

S fx  'x + f i n  i n  
= bSx + - 1 - k  1 - k  
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Table 3. Thermal Flux From an External Source 

Location 

Av. Flux/Source Strength 
[ ( ,/em2 -see ) i ( (  n/sec ) 1 C hamb e r 

Length 
( i n .  ) no f u e l  keff = 0.91 

120° thimble any 13 x io-" 18 x lo-" 

150" thimble 4 x 9 x lo-" 
I n s t r .  Shaft  (-180') 6 2 x lo-" 7 x 10-6 

I n s t r .  Shaft  26 6 x 1.7 x 

The term bS i s  the  f lux  due t o  neutrons bypassing the  core and should 

be in sens i t i ve  t o  k 

ex terna l  source neutrons w i l l  ge t  i n t o  the  core and a l s o  a shape f a c t o r  

f o r  the f i s s i o n  neutrons produced. I ts  value w i l l  depend on k 

probably qu i t e  low at  k 

neutrons w i l l  be t ransmit ted through the  core.  Assume a l i n e a r  increase 

The value of fin should not change as much with k with k 

assume t h a t  it i s  constant .  With these assumptions 

x 
The f a c t o r  fx includes the  p robab i l i t y  t h a t  e f f '  

and i s  e f f '  
= 0, r e f l e c t i n g  the  low p robab i l i t y  t h a t  source e f f  

so e f f '  e f f '  

where a, b and c a r e  constants .  

The value of c f o r  each chamber loca t ion  can be calculated from the  

c r i t i c a l  f l u x  d i s t r i b u t i o n s .  Values f o r  a and b can be calculated from 

the  two Equtpoise Burnout r e s u l t s  a t  k = 0 and k = 0.91. Values f o r  the  

various proposed loca t ions  are given i n  Table 4. These r e l a t ions  were 

used t o  es t imate  the  reac tor  behavior and source requirements under sub- 

c r i t i c a l  conditions.  
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Table 4. Flux/Source Factors 

Chamber 
Location Length a( b( c(cm-2) 

( i n . )  

120" thimble any 3 x 13 x 3 x 
150" thimble any 5 4 3 
I n s t r .  Shaft  6 4 2 x 1 

I n s t r .  Shaft  26 1 x 10'~ 6 x 3 x 

Note: See t e x t  f o r  de f in i t i on  of a, b and c .  

SAFETY FEQUIRFJENTS 

When excess r e a c t i v i t y  i s  added t o  a reac tor  which i s  i n i t i a l l y  

operating a t  a very low power, the  f i s s i o n  r a t e  must increase by severa l  

orders of magnitude before the inherent shutdown mechanism of the  negative 

temperature coe f f i c i en t  of r e a c t i v i t y  becomes e f f e c t i v e  o r  a rod drop i s  

i n i t i a t e d  by the  high-level  s a fe ty  c i r c u i t s .  

on the MSRF.) 

amount of excess r e a c t i v i t y  may be added by a continuing r e a c t i v i t y  ramp 

and the  power may be increasing with a very short  per iod by the  time the  

various shutdown mechanisms begin t o  a c t .  I n  the  so-cal led "s ta r tup  

accident" so much excess r e a c t i v i t y  i s  added t h a t  severe power and temper- 

a tu re  t r ans i en t s  may be produced despi te  the  ac t ion  of the shutdown 

mechanisms. 

(There i s  no per iod scram 

Since t h i s  power increase takes some time, a subs t an t i a l  

I n  such accidents,  provided the f i s s i o n  r a t e  follows the  behavior 

predicted by the nuclear k ine t i c s  equations, the seve r i ty  of the  tempera- 

t u r e  excursion i s  uniqdely determined by the rate of r e a c t i v i t y  increase,  

the c h a r a c t e r i s t i c s  of the inherent and mechanical shutdown mechanisms, 

and the  i n i t i a l  power ( t h e  mean value of the  i n i t i a l  f i s s i o n  r a t e ) .  If, 

however, the i n i t i a l  f i s s i o n  r a t e  i s  extremely low, s t a t i s t i c a l  f luc tua-  

t i ons  about the  mean may permit wide va r i a t ions  i n  the  amount of excess 

r e a c t i v i t y  which can be introduced before the  power reaches a s ign i f i can t  



l e v e l .  

follows. 

there  w i l l  be an i n i t i a l  period of time during which the  power l e v e l  i s  

so low t h a t  s t a t i s t i c a l  f luc tua t ions  a re  important. Eventually the  power 

l e v e l  w i l l  r i s e  t o  a s u f f i c i e n t l y  high l e v e l  so  t h a t  f u r t h e r  s t a t i s t i c a l  

f luc tua t ions  have negl ig ib le  e f f e c t .  The influence of the  s t a t i s t i c a l  

f luc tua t ions  i n  the e a r l y  s tage of the  s t a r tup  w i l l ,  however, p e r s i s t  

through t h e  high l e v e l  s tage i n  the sense t h a t  the  ea r ly  s t a t i s t i c a l  

f luc tua t ions  determine the i n i t i a l  conditions f o r  the high l e v e l  s tage. ' '  

In  the case of t he  W E ,  the inherent alpha-n source produces more than 

lo5 neutrons/sec i n  the  core whenever the  uranium required f o r  c r i t i c a l i t y  

i s  present ,  and the  f i s s i o n  r a t e  i s  already i n  the  high l e v e l  s tage  

( s t a t i s t i c a l  f luc tua t ions  unimportant) a t  the  outse t  of any s t a r tup  

accident .  Furthermore, k ine t i c s  ca lcu la t ions  have shown t h a t  the  i n i t i a l  

f i s s i o n  rate sustained by the  inherent alpha-n source i s  high enough t o  

make to l e rab le  the  worst c red ib le  s t a r t u p  accident,  which i s  described i n  

the following paragraphs. 

The problem i s  described by Hurwitz e t  a l .  i n  a recent paper7 as 

"When a reac tor  i s  s t a r t e d  up with an extremely weak source, 

The maximum r a t e  of r e a c t i v i t y  addi t ion t h a t  can be achieved i n  the 

MSRE r e s u l t s  from the  uncontrolled,  simultaneous withdrawal of a l l  th ree  

cont ro l  rods.  The r a t e  of r e a c t i v i t y  addi t ion depends on the type of 

f u e l  i n  the  reac tor  (which determines the  control-rod worth) and the  

pos i t i on  of the  rods with respect t o  the  d i f fe ren t ia l -wor th  curve. 

most severe rod-withdrawal accident involves f u e l  C and the  maximum r a t e  

of reactivity addition is 0.08s 6k/k per see. 

d i t i o n  r a t e ,  0.10% per  see,  can be obtained with f i e 1  B, but  t h i s  mixture 

a l s o  has a l a r g e r  negative temperature coe f f i c i en t  o f  r e a c t i v i t y  so t he  

r e su l t an t  power excursion i s  less severe.  ) 

The 

(A higher reactivity ad- 

For shutdown margins g r e a t e r  than 2% 6k/k and r e a c t i v i t y  ramps between 

0.02 and O.l$ per  see,  t he  power l e v e l  of the reac tor  when k = 1 i s  about 

2 m i l l i w a t t s  i f  only the inherent alpha-n source (4 x lo5 n/sec) i s  present .  

Figure 6 shows the  power and temperature excursions t h a t  r e s u l t  with 

C when a l l  t h ree  cont ro l  rods a r e  moving i n  the  region of maximum 
~ 

7H. Hurwitz, Jr., D. B. MacMillan, J. H. Smith and M. L .  Storm, 
"Kinetics of Low Source Reactor S tar tups .  Par t  I", Nucl. S e i .  Eng., 
166-186 (1963 ) . 

f u e l  

-7 15 
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Fig. 6 .  Power and Temperature Transients Produced by Uncontrolled 
Rod Withdrawal, Fuel C. 



d i f f e r e n t i a l  worth when k 

the nuclear power reached 

= 1 f o r  t h i s  condition. In  t h i s  ca lcu la t ion  

15 Mw ( the  l e v e l  a t  which the reac tor  sa fe ty  

curcui t s  i n i t i a t e  cor rec t ive  ac t ion )  7 .? see a f t e r  c r i t i c a l i t y  was 

achieved. A t  t h a t  time 0.6% excess r e a c t i v i t y  had been added and, s ince  

the  nuclear  average temperature of the f u e l  ( T f )  had r i s en  less than 

2'F, almost none had been compensated by the  temperature coef f ic ien t ;  

the  reac tor  period w a s  0 .1  see.  In  the  absence of ac t ion  by the sa fe ty  

system, in to le rab ly  high f u e l  temperatures would be produced by t h i s  

accident,  not as a r e s u l t  of the  i n i t i a l  excursion but  as a r e s u l t  of 

the  continued rapid rod withdrawal afterwards.  

* 

Figure 7 shows the r e s u l t s  of a ca lcu la t ion  of the same accident 

i n  which two of the three  cont ro l  rods were dropped (with a 0.1-see delay 

time and an acce lera t ion  of 5 ft /sec2)8 when the  power reached 15 Mw. 
The temperatures reached i n  t h i s  case would cause no damage. Thus the  

inherent alpha-n neutron source i s  adequate from the standpoint of 

reac tor  sa fe ty .  

Because the  s t a r tup  accident i s  sa fe ly  l imi ted  with only the inherent 

source i n  the  reactor ,  it i s  not  a sa fe ty  requirement t h a t  any addi t iona l  

source be present  during s t a r t u p .  

instrumentation capable of "seeing" the inherent source be in s t a l l ed ,  

because i t s  presence i s  c e r t a i n  and does not  have t o  be confirmed before 

each s t a r t u p .  

Nor i s  it necessary f o r  s a fe ty  t h a t  

INITIAL STARTUP EXPERIMENTS 

Although it i s  not a sa fe ty  requirement, t he  presence of a source- 

de tec tor  combination which permits monitoring of the  f i s s i o n  rate i n  the 

s u b c r i t i c a l  core i s  necessary f o r  convenient and order ly  experimentation 

and operation. 

8These values a r e  conservative estimates o f  the rod cha rac t e r i s t i c s  
based on t e s t s  with a prototype assembly. 
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Fig. 7. E f fec t  of Dropping Two Control Rods a t  15 Mw During 
Uncontrolled Rod Withdrawal, Fuel C .  
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L More s u b c r i t i c a l  observations w i l l  be made during the  i n i t i a l  nuclear 

s t a r t u p  experiments than a t  any o ther  time. For these experiments it w a s  

expected t h a t  temporary neutron counting channels would be s e t  up, using 

sens i t i ve  de tec tors .  The thimbles i n  the thermal sh i e ld  were included 

f o r  t h i s  purpose, t o  obtain a higher average f lux  a t  the  chambers than 

could be obtained i n  the nuclear instrument sha f t  and a l so  t o  provide 

f o r  i n s t a l l a t i o n  of de tec tors  a t  more than one loca t ion .  

The v e r t i c a l  thimbles w i l l  accomodate 30-in-long BF3 chambers, with 

Even with these sens i t i ve  a counting e f f ic iency  of 14  counts pe r  n/cm2. 

chambers, the  inherent source i n  the salt  (containing only the depleted 

uranium) before the addi t ion of the  enriched uranium i s  inadequate t o  

give a s ign i f i can t  count r a t e .  Because it i s  des i rab le  t o  have a r e fe r -  

ence count r a t e  a t  p r a c t i c a l l y  zero mul t ip l ica t ion ,  an extraneous source 

i s  required f o r  the  c r i t i c a l  experiment. Furthermore, i n  the  determination 

of the  c r i t i c a l  po in t  and possibly i n  the ca l ib ra t ion  of the cont ro l  rods, 

it i s  convenient t o  be ab le  t o  remove the major neutron source and observe 

the decay of the  f lux .  For these reasons, a removable ex te rna l  source 

should be provided f o r  these experiments. 

The f l u x  a t  the  various chamber locat ions,  from an ex terna l  source, 

a t  any value of k can be estimated from Eq. 2 and the  f ac to r s  i n  

Table 4. The i n t e r n a l  source s t rength  increases l i n e a r l y  with the  

amount of enriched uranium i n  the core, reaching about 4 x lo5 n/sec 

a t  the  clean c r i t i c a l  concentration. The f lux  from t h i s  source can a l so  

be estimated from Eq. 2 and Table 4. The predicted va r i a t ion  of k 

with enriched U concentration i s  necessary f o r  t h i s  calculat ion,  and t h i s  

r e l a t i o n  is  shown i n  Fig.  8. 

e f f  

e f f  

The method of a t t a i n i n g  the  c r i t i c a l  concentration w i l l  be t o  add 

increments whose s i zes  a r e  determined by a p l o t  of inverse  count r a t e  vs 

amount of enriched uranium already added. Fig.  9 i s  such a p l o t ,  generated 

from the  f lux  ca lcu la t ions  described above and the  k vs C re la t ionship  

from Fig.  8. 
source of lo7 n see a re  included. 

Neutrons from both the  i n t e r n a l  source and an ex terna l  

The bowing of the  curves i n  Fig.  9 r e f l e c t s  the contr ibut ion of 

neutrons which a r e  sca t t e red  around the outside of the  reac tor  from the 

source t o  the de tec tors .  A s  would be expected, the  e r r o r  i s  l a r g e s t  f o r  
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t he  de tec tor  located neares t  the  source. Because the  bowing makes ex- 

t rapola t ion  less accurate,  the instrument sha f t  i s  the  most su i t ab le  

loca t ion  f o r  de tec tors  i n  the approach t o  c r i t i c a l .  Therefore the  ex- 

t e r n a l  source f o r  the  c r i t i c a l  experiment should be a t  l e a s t  s t rong 

enough t o  give a conveniently high count r a t e  at. a chamber i n  the  in s t ru -  

ment sha f t  before any enriched uranium i s  added. 

would give a count rate of 10 c/sec on a chamber with a counting e f f i -  

ciency of 1 4  c/sec/n/cm2-sec under these condi t ions.  

A source of 1 x lo6 n/sec 

The s t rength  requirement j u s t  s t a t e d  i s  a minimum f o r  s t a r t i n g  the  

c r i t i c a l  experiment. The i n i t i a l  approach t o  c r i t i c a l i t y  w i l l  include 

experimental determinations of control-rod worth and concentration coef- 

f i c i e n t  of r e a c t i v i t y .  These determinations are based on count-rate 

measurements with and without the ex terna l  source present .  Therefore, 

it must be possible  t o  obtain a subs t an t i a l  d i f fe rence  i n  count r a t e  by 

removing the  ex te rna l  soilrce. Since the  in t e rna l ,  alpha-n source i n -  

creases  i n  i n t e n s i t y  with increasing uranium concentration, the  ex te rna l  

source must be s t rong enough t o  make the contr ibut ion from the  i n t e r n a l  

source s m a l l  by comparison when the uranium concentration i s  near  the 

c r i t i c a l  value.  The f lux  ca lcu la t ions  ind ica te  t h a t  an ex te rna l  source 

of 1 x lo7 n/sec would produce a f lux  i n  the instrument sha f t  a t  l e a s t  

100 times t h a t  from the  i n t e r n a l  source a t  a l l  po in ts  during the  approach 

t o  c r i t i c a l .  The differences i n  count rate which can be obtained with 

a source of t h i s  s t rength  are i l l u s t r a t e d  i n  Fig.  10. This f igu re  shows 

the reciprocals  of the count r a t e s  predicted f o r  a BF3 chamber (counting 

e f f i c i ency  of 14) i n  the instrument sha f t  as the  c r i t i c a l  po in t  i s  ap- 

proached. 

source withdrawn) and with both the  i n t e r n a l  source and the  ex te rna l  

source.  

The two curves a re  f o r  the  i n t e r n a l  source alone (ex terna l  

NORMAL OPERATIONAL REQUIRFMFmS 

An externa l  source of neutrons i s  required during normal operation 

of the  reac tor  t o  permit the  convenient monitoring of the  r e a c t i v i t y  

during rout ine s t a r tups .  

s a t i s f i e d  by the  inherent  alpha-n source. ) 
(The sa fe ty  requirements f o r  a source are 
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P a r t i a l  and Complete Shutdown and Star tup  Y 

There a re  two degrees of normal shutdown i n  the MSFE - p a r t i a l  and 

complete. I n  a p a r t i a l  shutdown, the  f i s s i o n  chain reac t ion  i s  shut- 

down by in se r t ing  the  cont ro l  rods t o  take the reac tor  s u b c r i t i c a l ,  while 

the  f u e l  sa l t  continues t o  c i r c u l a t e  a t  t he  normal operating temperature. 

(E lec t r i c  heaters  maintain the temperature. ) 
margin i s  between 2 and 7% 6k/k, depending mainly on the  amount of xenon 

i n  the  core. 

mental operation of the reac tor .  Less f requent ly ,  t he  reac tor  w i l l  be 

completely shutdown by in se r t ing  the  rods and draining the fuel from the 

core i n t o  a dra in  tank. 

The r e a c t i v i t y  shutdown 

Such p a r t i a l  shutdowns w i l l  occur f requent ly  during experi-  

A s t a r tup  from a completely shutdown condition w i l l  involve two 

s tages ,  and the  source and de tec tor  requirements a r e  d i f f e r e n t  f o r  the  

two s tages .  The f i r s t  s tage involves preheating, f i l l i n g  the core, and 

beginning c i r cu la t ion .  

up from a p a r t i a l  shutdown) involves withdrawing the cont ro l  rods t o  take 

the  reac tor  c r i t i c a l  and on up t o  the desired power l e v e l .  

The second (which i s  the  only s t e p  i n  s t a r t i n g  

Second Stage StartuD Reauirement 

For the  second stage,  it i s  des i rab le  t h a t  one instrument follow the 

f lux  continuously, from the  beginning of rod withdrawal u n t i l  t he  reac tor  

i s  operating a t  f u l l  power. The servo-driven f i s s i o n  chambers serve t h i s  

purpose. Therefore the  ex terna l  source should a t  l e a s t  be s t rong enough 

t o  give a s ign i f i can t  count r a t e  on the  f i s s i o n  chambers when the  core 

i s  full of salt  but  s u b c r i t i c a l  by the  m a x i m u m  margin a t t a inab le  with the 

cont ro l  rods (3% 6k/k). A cont ro l  in te r lock  requires  t h a t  one of t he  

f i s s i o n  chambers have a count rate of 2 c/sec before  the  rods can be 

withdrawn i n  t h i s  s tage of t he  operation. The calculated f lux  d i s t r i -  

butions ind ica te  t h a t  t o  obtain the  required count rate on the  f i s s i o n  

chambers, an ex terna l  source of a t  least 7 x lo6 n/sec i s  required.  

i n t e r n a l  source of 4 x lo7 n/sec i n  the  core would a l s o  c l e a r  the  i n t e r -  

lock and permit rod withdrawal. As  shown i n  F ig .  2, t he  f i s s i o n  products 

would produce photoneutrons a t  a r a t e  g rea t e r  than t h i s  f o r  severa l  weeks 

a f t e r  a few days'  operation a t  10 Mw. 

An 

W 



F i r s t  Stage S tar tup  Requirements 

I n  the  f i r s t  s tage,  the  r e a c t i v i t y  must be monitored from the  time 

f u e l  begins t o  en te r  the  core u n t i l  the  core i s  completely f i l l e d .  Before 

a f i l l  can begin it i s  required t h a t  the  rods be withdrawn t o  such a 

pos i t i on  t h a t  k 

procedure allows abnormalit ies t o  be detected,  while re ta in ing  some re-  

a c t i v i t y  cont ro l  which i s  i n s t a n t l y  ava i lab le  by dropping the  rods. To 

insure t h a t  the  monitoring system of source and de tec tors  i s  operative,  

there  are two cont ro l  in te r locks  which require  a count r a t e  of a t  l e a s t  

2 c/sec.  One i s  on rod withdrawel and the o ther  i s  on dra in  tank pres-  

su r i za t ion .  

give 2 c/sec on the  f i s s i o n  chambers with no f u e i  i n  the  core, according 

t o  the  f l u x  ca lcu la t ions .  Note t h a t  t h i s  i s  over f i v e  times the  source 

s t rength  required f o r  the second s tage .  If BF3 chambers with an ac t ive  

length of 26 i n .  and a counting e f f i c i ency  of 14 (c/sec)/(n/cm2-sec) a r e  

used i n  the instrument sha f t ,  a count r a t e  of 2 c / sec  with no f u e l  i n  the 

core would be produced by an ex terna l  source of only 2 x lo5 n/sec. (The 

f a c t o r  by which the required source s t rength  i s  reduced i s  less than the  

r a t i o  of counting e f f i c i enc ie s  because the longer BFs chambers a r e  exposed 

t o  a lower average f l u x . )  

w i l l  reach about 0.98 when the  core becomes full. This e f f  

An externa l  source of 4 x le7 n/sec would be necessary t o  

Use of the  BF3 chambers t o  monitor the  f i l l i n g  operation would re -  

qu i re  some changes i n  the reac tor  control  c i r c u i t s .  

in te r lock  on control-rod w i t h d r a w a l  p r i o r  t o  f i l l i n g  could be bypassed 

by an in t e r lock  which permits rod withdrawal i f  a l l  ( o r  most) of the fue l  

s a l t  i s  i n  the  dra in  tank (as indicated by drain-tank weight, f o r  instance) .  

This would allow withdrawal of the  rods t o  start the f i l l  but  would pro- 

h i b i t  fhrther withdrawal with the  reac tor  even p a r t l y  full unless the 

f i s s i o n  chambers were ind ica t ing  r e l i ab ly .  The count-rate confidence 

in t e r lock  which must be s a t i s f i e d  before  helium can be admitted t o  the  

dra in  tank t o  start the  f i l l  could be based on a s igna l  from the channels 

served by the  BF3 chambers. 

The operat ional  
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Limiting Reauirement on Source Strength 

If the  more sens i t i ve  chambers a r e  used i n  place of the  servo-driven 

f i s s i o n  chambers f o r  monitoring the  f i l l ,  the  l imi t ing  requirement on 

the  ex terna l  source i s  s e t  by the  second s tage  in te r lock  on rod with- 

drawal a t  7 x lo6 n/sec. 

Because the  second-stage rod-withdrawal in te r lock  i s  encountered 

a f t e r  the  f u e l  i s  i n  The core, the presence of an i n t e r n a l  source s t rong 

enough t o  clear the  in te r lock  would el iminate  t h i s  p a r t i c u l a r  requirement 

f o r  an ex terna l  source. Thus f o r  many s t a r tups  a f t e r  high power operation 

it would be possible  50 depend on the fission-product photoneutrons t o  

c l e a r  the  rod-withdrawal in te r lock  and the  ex te rna l  source requirement 

would be s e t  by the f i r s t - s t a g e ,  f i l l i n g  in te r lock .  

Other Considerations 

Because the MSRE i s  expected t o  operate f o r  severa l  years,  severa l  

fac tors  must be considered i n  the  choice of an ex te rna l  source. 

An antimony-beryllium source has the  advantages of low i n i t i a l  cost ,  

ready a v a i l a b i l i t y  i n  s t rengths  wel l  above 10' n/sec ( i r r a d i a t e d  i n  the 

LITR) and freedom from the hazards of acc identa l  re lease  of alpha a c t i v i t y .  

The most ser ious drawback i s  i t s  shor t  h a l f - l i f e .  There i s  no s ign i f i can t  

regeneration of Sb12* i n  the  low neutron f lux  a t  the  source tube, so  the  

i n i t i a l  s t rength  must allow f o r  the decay of t he  source with a 60-day 

h a l f - l i f e .  Even s o  it w i l l  be necessary t o  replace the  source pe r iod ica l ly  

throughout the  l i f e  of the reac tor .  For example, i n  order  t o  have 

7 x lo6 n/sec a f t e r  12 months decay, an Sb-Be source with an i n i t i a l  

s t rength  of 4 x lo8 n/sec would be necessary.  

even s t ronger  than t h i s  can be produced i n  the  LITR, it i s  probably 

more economical t o  use a p a i r  of smaller sources which are a l t e r n a t e l y  

used i n  the %RE and regenerated i n  the LITR. 

Although Sb-Be sources 

The decay of the source i s  not a problem i f  a plutonium-beryllium 

source (24,000 year  h a l f - l i f e )  i s  used. 

a r e  obtainable contain from 1 t o  10 cur ies  of  Pu239 and produce from 

1 . 6  x lo6 t o  1 .6  x lo7 n/sec. 

Standard Fu-Be sources which 

(The l a r g e s t  sources are too b ig  t o  f i t  



W i n t o  the MSaE source tube, however.) 

decay i s  avoided, the Pu-Be source has severa l  disadvantages. The i n i t i a l  

cos t  i s  high and plutonium containment must be guaranteed a t  a l l  times. 

Also, the  heat generation by f i s s i o n  i n  the  plutonium (about 10 kw a t  a 

reac tor  power of 10 M w )  would probably require  t h a t  the  source be re -  

t r ac t ed  during high-power operation. 

Although the  problem of source 

RF1C OMMENDAT IONS 

1. I n s t a l l  i n  t he  spare tubes i n  the  instrument sha f t  two addi t iona l  

neutron chambers with a much higher counting e f f i c i ency  than the  servo- 

driven f i s s i o n  chambers. Use these during the  i n i t i a l  c r i t i c a l  experi-  

ments and f o r  monitoring the  f i l l i n g  s tage of rout ine s t a r tups .  Change 

the  in te r lock  requir ing a dependable count r a t e  p r i o r  t o  f i l l i n g  from the  

servo-driven-fission chambers t o  these chambers. 

2 .  As soon as the  i n s t a l l a t i o n  of the reac tor  and equipment permits, 

check the  flux/source r a t i o  calculated f o r  the  core with no f u e l .  

w i l l  g r ea t ly  reduce the uncer ta in ty  i n  the source s t rength  requirements a ) 
Any source of lo6 n/sec o r  more w i l l  serve f o r  t h i s  preliminary experiment. 

(This 

3. 
requirements. 

based on the  observed flux/source s t rength  r a t i o  and th, Q considerations 

described i n  the  preceding sec t ion .  I f  the  ac tua l  flux/source r a t i o  i s  

near  t h a t  calculated,  the choice f o r  a source would be e i t h e r  a 2-curie  

Pu-Be source (8 x lo6 n/sec) or a p a i r  of Sb-Be sources which would pro- 

duce 3 t o  3 x lo8 n/sec (from about 123 cur ies  of Sb12') a f t e r  an 8-week 

i r r a d i a t i o n  i n  the  LITR. After  one Sb-Be source had been i n  the  MSRF: f o r  

about 10 months, t he  o ther  would be placed i n  the  LITR f o r  i r r a d i a t i o n  t o  

be ready f o r  exchange when required.  

w i l l  be des i rab le  t o  modify the  ex i s t ing  provisions f o r  source in se r t ion  

and removal t o  make the  operation less time-consuming and cos t ly .  

f i c a l l y ,  an access p o r t  should be provided through the  s t e e l  c e l l  cover 

and the  lower sh i e ld  plug d i r e c t l y  over t he  source tube.  

Procure o r  manufacture a source which w i l l  meet the  operat ional  

The choice of the source type and i t s  s t rength  must be 

I f  the  Sb-Be sources a r e  used, it 

Speci- 



APPENDIX 

CALCULATION OF FLUX FROM AN EXTEFiNAL SOURCE 

The neutron source f o r  t h e  MSRE w i l l  be i n s t a l l e d  i n  a thimble i n  

the  thermal sh ie ld ,  about 20 i n .  from t h e  outs ide of t h e  r eac to r  vesse l .  

The various neutron de tec tors  w i l l  a l s o  be, i n  e f f e c t ,  i n  t h e  thermal 

sh i e ld  a t  d i f f e r e n t  c i rcumferent ia l  pos i t ions .  This  r e s u l t s  i n  a 

highly unsymmetrical cy l ind r i ca l  geometry f o r  condi t ions i n  which neutrons 

from t h e  source contr ibute  subs t an t i a l ly  t o  t h e  neutron f l u x .  The source 

i s  a l s o  shor t ,  compared t o  t h e  height of t h e  reac tor ,  so an  accurate  ca l -  

cu la t ion  of t h e  f l u x  a t  t h e  de tec tors  r e s u l t i n g  from the  source would 

require  t h e  use of 3-dimensiona1, cy l ind r i ca l  ( r ,  e, z )  geometry. 

Since the re  i s  no r eac to r  program ava i l ab le  f o r  t r e a t i n g  t h i s  problem, 

a number of approximations were made t o  reduce t h e  problem t o  one which 

could be handled with e x i s t i n g  programs. 

Geometric Approximations 

The progran used f o r  t h e  f l u x  ca lcu la t ions  w a s  t h e  Equipoise Burn- 

out Code, a 2-group, 2-dimension neutron d i f fus ion  ca l cu la t ion  with pro- 

v i s ions  f o r  c r i t i c a l i t y  search.  This code uses rectangular  (X-Y) geometry 

and i s  l imi ted  t o  1600 mesh poin ts .  

I n  order  t o  t rea t  t h e  azimuthal non-symmetry, t h e  ca lcu la t ions  were 

made i n  a hor izonta l  plane through the  reac tor  and thermal sh i e ld  a t  

the  midplane of t he  core.  The a x i a l  dimension of t h e  r eac to r  was 

represented by a constant geometric buckling i n  t h a t  d i r ec t ion .  Per- 

tu rba t ions  caused by t h e  neutron de tec tors  were neglected,  so t h e  plane 

of t h e  ca lcu la t ion  had an  axis of symmetry along t h e  diameter which 

in t e rcep t s  t h e  pos i t ions  of t h e  source and t h e  f i s s i o n  chambers. There- 

fo re ,  it w a s  necessary t o  descr ibe only one-half of t h e  plane i n  t h e  

mathematical model. The l i m i t a t i o n  t o  X-Y geometry required that t h e  

various regions be represented as col lec t ions  of  rec tangles .  The 

main port ion of t h e  core w a s  made equal i n  c ross -sec t iona l  area t o  t h e  

a c t u a l  core with t h e  t ransverse  dimensions equal t o  core r a d i i .  These 



-+ two requirements determined the  s i z e  of t he  l lcutouts l l  a t  t h e  corners 

of t h e  otherwise square core.  

t he  per ipheral  regions of t h e  reac tor ,  t he  gap between the  reac tor  and 

thermal sh ie ld ,  and t h e  thermal sh i e ld )  were assigned t ransverse 

dimensions equal t o  t h e  r a d i a l  dimensions of t h e  a c t u a l  components. 

Figure 11 i s  a diagram of t h e  r e su l t an t  model. 

The regions surrounding t h e  core ( i . e .  

Because of t h e  mesh point l i m i t a t i o n  i n  the  Equipoise Burnout 

program, it w a s  necessary t o  omit some physical d e t a i l  i n  t h e  ca l -  

cu la t iona l  model. The cont ro l  rod thimbles near t h e  center  of t h e  

core were neglected i n  t h i s  model, as were t h e  va r i a t ions  i n  f u e l  

f r a c t i o n  and graphi te  f r a c t i o n  i n  t h a t  region; t h e  main por t ion  of 

t h e  core w a s  t reated as a s ingle  homogeneous mixture. The per iphera l  

regions of t h e  reac tor ,  including the  core can, t h e  f u e l  annulus, and 

t h e  r eac to r  vesse l  w a l l ,  were a l l  homogenized i n t o  a s ing le  region 

( r eac to r  s h e l l  i n  F i g .  The materials i n  t h e  gap between t h e  

r eac to r  and t h e  thermal sh i e ld  (hea ters ,  hea te r  thimbles, i n su la t ion  

and in su la t ion  l i n e r )  were a l l  homogenized and uniformly d i s t r i b u t e d  

throughout t h e  gap. A l l  t h e  s t r u c t u r a l  material in s ide  t h e  thermal 

sh i e ld  w a s  a l s o  neglected.  A t o t a l  of 1225 mesh points  i n  a 49-by- 

25 a r r a y  were used t o  descr ibe t h e  ca l cu la t iona l  model. 

11). 

Nuclear Approximations 

Two-Group Constants 

The Equipoise Burnout program has provisions for ca lcu la t ing  2- 

group nuclear constants  i f  t h e  necessary microscopic cross-sect ion 

da ta  are supplied as inpu t .  I n  t h i s  case,  however, it w a s  more ex- 

pedient t o  ca l cu la t e  t h e  2-group constants  separa te ly  using MODRIC, 

a 1-dimensional, 33-group ca lcu la t ion .  Multi-group cross  sec t ions  

were prepared f o r  t h e  MODRIC program using GAM-1 and t h e  ex i s t ing  

cross-sect ion l i b r a r y  f o r  t h a t  program. A r a d i a l  c r i t i c a l i t y  ca l -  

cu la t ion  w a s  then  made with MODFXC f o r  t h e  r eac to r  model with f u e l  

salt  containing 0 .6  of t h e  c r i t i c a l  concentration of U235; t h e  presence 

w 
c 
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of t h e  ex terna l  source was neglected i n  t h i s  ca l cu la t ion ,  

constants  generated by MODRIC were then used t o  ca l cu la t e  t h e  f l u x  

d i s t r i b u t i o n  i n  t h e  2-dimensional model with t h e  source present .  

The 2-group 

MODRIC ca lcu la t ions  were a l s o  used t o  es t imate  t h e  2-group con- 

s t a n t s  f o r  t h e  case with no f u e l  salt  i n  the  r eac to r .  I n  order  t o  

ge t  group constants  f o r  t h e  core with only t h e  graphi te  moderator 

present ,  ca lcu la t ions  were made f o r  t h e  normal dens i ty  of t h e  d i l u t e  

f u e l  and f o r  d e n s i t i e s  t h a t  were 0.5, 0.25, and 0 .1  of t h e  normal 

value.  The 2-group constants  obtained from these  ca lcu la t ions  were 

p lo t t ed  as a func t ion  of f u e l  dens i ty  and extrapolated to zero dens i ty  

t o  ge t  constants f o r  t h e  reac tor  containing no fue l  (only  g raph i t e ) .  

For severa l  reasons, t h e  above procedure does not l ead  t o  com- 

p l e t e l y  accurate  values for t h e  2-group constants .  The fast-group 

constants i n  a given region depend, t o  some exten t ,  on t h e  energy 

d i s t r i b u t i o n  of t h e  neutrons i n  t h e  region. This energy d i s t r i b u t i o n  

i s  d i f f e r e n t  i f  a l l  of t h e  neutrons are born i n  t h e  core (as w a s  

assumed i n  t h e  MODRIC ca lcu la t ions)  than i f  a subs t an t i a l  number 

are born i n  an  ex te rna l  source region (as w a s  t he  case i n  t h e  2- 

dimensional ca lcu la t ions)  . 
t h e  f a c t  t h a t  neutrons born i n  t h e  reac tor  and those born i n  t h e  

ex te rna l  source have d i f f e r e n t  energy d i s t r ibu t ions  a t  b i r t h .  Neutrons 

born i n  t h e  r eac to r  a r e  products of t h e  f i s s i o n  process and have an  

energy d i s t r i b u t i o n  t h a t  corresponds t o  t h e  f i s s i o n  d i s t r ibu t ion ;  t h e  

fast -group constants  were ca lcu la ted  f o r  t h i s  bir th-energy d i s t r i b u t i o n  

(10 t o  0.011 Mev with an  average of about 2 Mev i n  t h e  MODRIC program 

used) .  

depends on t h e  nature of t h e  source.  For  an  Sb-Be source, t h e  average 

neutron energy i s  about 34 Kev. 

t h e  fast -group constants  ca lcu la ted  f o r  f iss ion-source neutrons were 

appl ied t o  a l l  t h e  fas t  neutrons, regardless  of t h e i r  point  of o r ig in .  

Since absorpt ion cross  sec t ions  genera l ly  increase  with decreasing 

neutron energy, t h i s  treatment overestimated t h e  neutron f l u x  a t  t h e  

chambers f o r  a given neutron source. 

Some addi t iona l  e r r o r  i s  introduced by 

The energy d i s t r i b u t i o n  of neutrons produced by a source 

I n  t h e  Equipoise Burnout ca l cu la t ion  
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Source Configuration 

I n  the  Equipoise Burnout ca lcu la t ion ,  t h e  source region w a s  t r e a t e d  

as a s lender  (2 em by 2 .6  e m >  prism 

of t h e  r eac to r  model, This i s  a consequence of applying a constant 

a x i a l  buckling t o  a l l  regions.  A s  a r e s u l t ,  t h i s  source i s  less 

e f f i c i e n t  i n  terms of producing a neutron f l u x  a t  t h e  core midplane 

than  a shor t  source of t h e  same t o t a l  s t rength  loca ted  near t h e  mid- 

plane.  

shor t  source because t h i s  underestimate tended t o  counteract t h e  owr- 

e s t i n a t e  inherent  i n  t h e  cross-sect ion t reatment .  

extending along t h e  e n t i r e  height  

No  cor rec t ion  was appl ied f o r  t h e  higher e f f i c i ency  of t h e  

Composition of Thermal Shield 

The thermal sh i e ld  i s  f i l l e d  with s t e e l  b a l l s  t o  provide a mixture 

t h a t  i s  approximately 5% i r o n  and 5% water. 

does not f i l l  a l l  port ions of t h e  thermal sh i e ld .  The source thimble 

and t h e  spec ia l  counter thimbles a r e  protected by ha l f - sec t ions  of 8 - in .  

pipe which were welded t o  t h e  in s ide  of t h e  s h i e l d  t o  prevent damage 

t o  t h e  thimbles during the  add i t ion  of t h e  s t e e l  bal ls .  A s  a r e s u l t ,  

each of t h e  thimbles i s  surrounded by a l a y e r  of pure water. The 

nuclear ins t runent  sha f t ,  which extends t o  t h e  inner  w a l l  of t h e  

thermal sh ie ld ,  contains no s t e e l  b a l l s .  The only mater ia l  i n  t h i s  

sha f t ,  o ther  than water, i s  t h e  aluminum i n  t h e  guide tubes f o r  t h e  

neutron chambers. The neutron f l u x  at  the  various chambers i s  

infl-Jenced more by the  water l aye r  im-edia te ly  adjacent  t o  t h e  

thirrbles than  by the  iron-water mixture i n  t h e  rest  of t h e  thermal 

sh i e ld .  Therefore, t h e  presence of t he  s t e e l  balls w a s  neglected i n  

t h e  f l u x  ca l cu la t ions .  This leads  t o  highly erroneous f luxes  

everywhere il? t h e  thermal sh i e ld  except i n  t h e  immediate v i c i n i t y  of 

t h e  neutron chambers. 

Rowever, t h i s  mixture 

Irr 

U s e  of Diffusion Theory 

The Equipoise Burnout program which w a s  used t o  compute t h e  f l u x  

d i s t r i b u t i o n s  i s  based on a d i f fus ion  theory  treatment of t h e  neutron 

t r anspor t  problem. This  program w a s  used because i s  w a s  t h e  only one 
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U judged t o  be p r a c t i c a l  for an  approximate ca lcu la t ion  of t h e  ex terna l  

source requirements for t h e  MSRE. It i s  w e l l  known t h a t  d i f fus ion  

theory  has l imi t a t ions  which a r e  imposed by t h e  bas ic  assumptions i n  

t h e  development of t h e  mathematical t reatment .  These l imi t a t ions  

r e s t r i c t  t h e  accuracy of t h e  theory i n  regions with high absorpt ion 

cross sec t ion ,  near region boundaries and i n  regions where t h e  neutron 

mean free paths a r e  long. Since a l l  of these  f a c t o r s  were present i n  

t h e  ca l cu la t iona l  model, t h e  r e s u l t s  of t h e  ca lcu la t ions  can be 

regarded as no more than preliminary est imates .  It i s  l i k e l y  t h a t  

t h e  ca lcu la ted  f luxes  are at l e a s t  within an order  of magnitude of 

t h e  cor rec t  values but it i s  not possible  t o  def ine t h e  l i m i t s  of t h e  

probably e r r o r .  
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