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Two on-s i te  reactor  k ine t ics  simulators were developed f o r  t r a i n i n g  
ogerators of the Molten-Salt Reactor Experiment (MSm) i n  nuclear s t a r t u p  
and power-level operating procedures. 
general purpose, portable Electronic Associates, Inc., TR-10 analog com- 
puters  and were connected t o  the  reactor  control  and instrumentation 
system. 

Both simulators were s e t  up on 

The t r a i n i n g  prograrL w a s  successfully completed. Also, the reactor  
control  and instrumentation system, t h e  operating procedures, and the rod 
and radiator-door dr ives  were checked ou t .  Some minor modifications were 
made t o  the  system as a r e s u l t  of the experience with these simulators. 
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1. INTRODUCTION 

Two reactor kine--x simulators were developel fo r  t ra ining operators 
of the  Molten-Salt Reactor Experiment (MSRE) i n  nuclear s tar tup and power- 
leve l  operation procedures. Both simulators were instal led a t  the reactor 
s i t e ,  and were connected t o  the reactor instrumentation and controls system. 
The operators were trained i n  startup, or zero power, operation w i t h  the  
simulator i n  February 1965 and i n  parer-level operation in  October 1965. 

Both simulators were set up on general purpose, portable Electronic 
Associates, Inc., TR-10 analog computers (borrowed from the Instrumentation 
and Controls Division analog computer pool). No special  hardware (other 
than the computers) was required. Although most of the simulation tech- 
niques were straightforward, a few special  techniques were devised. 

This report describes the two simulators. 

2. STARTUP (ZERO POWER) SIMULATOR 

The s tar tup simulator, se t  up on one 9-10  analog computer (Fig. l), 
computed the reactor neutron level  from 10- w t o  1.5 Mw as a function of 
control-rod-induced reac t iv i ty  perturbations. 
on s y s t e m  temperatures was not included. 

The e f fec t  of nuclear power 

ORNL DWG. 66-4834 

INPUTS OUTPUTS RE ACTOR INSTRUMENTATION . ~t U L 

A 

NEUTRON LEVEL! 

FISSION CHAMBER I POSITION 

R R  -8  100 
R R- 8200 
CONSOLE METER: CHANNEL 1 
CONSOLE METER: CHANNEL 2 
SPECIAL: ON CONSOLE 

LINEAR FLUX 
RANGE 

Fig. 1. Diagram of Startup Simulator. 
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Tbe inputs t o  the sirhulator were signals indicating the actual  
positions of the control rods, and the outputs (indicated on the reactor 
instrumentation) were log count ra te ,  period, log power, and l inear  power. 

The l inear  flux-range input signal was taken f r o m  the selector  switch 
The fission-chamber position readout was provided on the reactor console. 

by a meter mounted on the console. 
f o r  the wide-range counting channel system.' The chamber position i s  
servo-controlled to give a constant output s i m a l ,  and the charriber posi- 
t i on  is  related t o  the log of the nuclear power. 
and the flux control system were also used. 

The f is  ion chamber is the detector 

The period interlocks 

The operators practiced the approach-to-critical experiment (in which 
plots  of inverse count rate vs rod position are used t o  extrapolate t o  the 
c r i t i c a l  rod posit ion) and rod-bump experiments fo r  calculating d i f fe ren t ia l  
rod-reactivity worth from measurements of s table  reactor period. 
simulator was a l so  used t o  check out the  flux servo controller.  

The 

Rod position simals were obtained f r o m  the three potentiometers nor- 
mally used by the MSRE computer. 
position was approximated fo r  the  regulating rod by a diode f'unction gen- 
erator  (Mg. 2). 
two rods w a s  l inear .  

The "S" curve re la t ing  rod worth and 

The rod worth vs position relationship for  the  other 

k . E .  B a l l  e t  -- al., MSRF: Design and Operations Report, pdrt V, Reactor 
Safety Analysis Report, ORNL-TM-732 (August 1964), pp. 96-98. 

ORNL IWG. 66-4835 
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Fig. 2. Simulator Approximation of Regulating Rod Worth vs B s i t i o n .  
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The analog c i rcu i t  used t o  compute reac t iv i ty  from the three rod posi- 
t ions included the e f fec ts  of the position of one rod on the t o t a l  worth of 
the others ("able 1). 

Bible 1. Full-Scale €bd Worths 

Full - Scale 
Rod Worth Reactivity 

Rod Pos it ion (Q W K )  vs Position - 
Regulating Rod Shims out 2.6 "S" curve 

Shims in  1.3 I' S" curve 

Both Shims Regulating rod out 5.8 l inear  

l inear  Regulating rod i n  4.5 

The neutron leve l  computation was made by converting the kinet ics  
equations t o  logarithmic form? since the neutron level  varied over eight 
decades. 'lho effective delayed-neutron precursor groups were used. The 
usual method of including the source term in  these equations was found t o  
be unsatisfactory, and a special  c i rcu i t  was used (see Sect. 6.1). 

The conversion of log power t o  l inear  power wag approximated by using 
a squaring device tha t  gave adequate accuracy over each l inear  (1.5 decade) 
range (Fig. 3 ) .  A voltage signal from the reactor instrumentation l i n e a r -  

2A.E. Rogers and T.W. Connolly, Analog Computation i n  Ehgineering 
Design, pp. 334-7, I k G r a w - H i l l ,  New York, 1960. 

POWER SIGNAL FROM LOGARITHMIC CALCULATION 

Fig. 3. Approximate bg-to-Linear Conversion. 
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range selector c i r cu i t  was subtracted from the log power signal, and t h i s  
difference was then converted t o  the l inear  signal. 

RR-8100 
RR-8200 
CONSOLE METER: CHANNEL t 
CONSOLE METER: CHANNEL 2 
SPEC’AL : ON 

NEUTRON LEVEL: 
LINEAR POWER 

LOG COUNT RATE 
PERIOD 
FISSION CHAMBER POSITION 

REACTOR INLET TEMPERATURE 

REACTOR OUTLET TEMPERATURE 

RADIATOR SALT OUTLET TEMP. 

- [ LOG POWER 

T R  -202 -A 5 k u -  
T I  - 2 0 2 - A 2  

The equations and analog computer c i rcu i t  used fo r  the  s tar tup simu- 
l a t o r  are given i n  Sect. 6.1 

RAD I ATOR 

A P  
AIR 

REACTOR 
CONTROL - 

MODE 

3. POWER U:vEL SIMULATOR 

Td 1 - 2 01 -A 
A ?  

- T -  

R 

RADIATOR SALT AT 

RADIATOR HEAT POWER 
X p R-201-A 0 -  FLOW (CONST) X AT 

* 

The power leve l  simulator, set up on two TR-10 analog computers 
(Fig. 4), simulated the kinet ic  behavior of the MSRE fo r  power levels 

Fig. 4. Diagram of Parer Level Simulator. 

between 0.5 and 12 Mw. 
positions of the rods and the radiator doors and the  actual  pressure drop 
of the cooling a i r  across the radiator.  The outputs were neutron levels  
and temperatures. The usual nuclear information and key system tempera- 
t u re  outputs were indicated on the reactor instrumentation. The reactor 
power-level servo controller and radiator load control systems were a l so  
used. 

The inputs were signals indicating the actual  

m e  reac t iv i ty  inputs from control-rod position signals were computed 
as i n  the s ta r tup  simulation. 
delayed-neutron precursor groups ) solved the l inear,  rather than loga- 
rithmic, kinet ics  equations. ranges 
on the reactor l inear  power channels were operational. 
l inear  t o  log power was approximated using a square-root device (Fig. 5 ) .  

The neutron leve l  computation (using two 

Only the 0 t o  1 .5  and the 0 t o  1 5  
Conversion from 

a 
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P - I O D I N E  b 
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Other react ivi ty  inputs t o  the power leve l  simulator were f r o m  com- 
puted xenon poisoning, noise, and fue l  and graphite temperature changes. 
The xenon-poisoning computation (Fig. 6 )  was included as an option. In 
consideration of the long time-constants of xenon buildup and decay, the 
equations were time scaled t o  run a t  ten times real time. 

Xe (FUEL) Y ). X=(CRAPHITE) 

ORNL DWG. 66-4839 

t STRIPPING (DOMINANT) 
DECAY 
BURNUP 
xF(ToTAL) >>,,I BURNUP 1.66X10-6 PSEC-' 

DECAY Ax = 2.1 X lo-' SEC-' 

DECAY 1 
>*=2.9XlOJSEC-' 

Steady- State Xe Poisoning When P = 10 Mw: 
6 K Fuel = -0.7% 
6 K Graphite = - 0.79 5'0 

Fig. 6. Diagram of Xenon Poisoning Computation. 

'Ihe reac t iv i ty  noise input w a s  included t o  of fse t  complaints typical  
of usual simulators about how "smooth" the flux output is  compared w i t h  
the noisy output of actual  reactors. 
resistance feedback (40 megohms) w a s  used a s  the noise source. 

An operational amplifier w i t h  high 

A simplified simulation of the thermal kinet ics  of the MSRE w a s  used 
which was based on previous studies of reactor dynamics.3 

The core was represented by two fue l  "lumps," or nodes, and the 
graphite by one. 
system. 

Six more lumps were used t o  represent the r e s t  of the 
The thermal character is t ics  a re  summarized in  Table 2. 

The heat removal rate f r o m  the radiator  is controlled by varying the 
a i r  flow through the radiator;  hence, the radiator salt  out le t  temperature 
is  affected by s a l t  i n l e t  temperature, a i r  i n l e t  temperature, and a i r  f l o w  
r a t e  changes. 
removal i s  t o  make use of the relationship of radiator cooling "effectiveness" 
as  a function of a i r  flow ra te .  
r a t i o  of the actual  temperature decrease of the hot f l u id  t o  t he  tempera- 
tu re  decrease i n  an ideal  (i.e.,  i n f in i t e  heat-transfer surface) heat 
exchanger: 

A simple but f a i r l y  accurate way of simulating the heat 

Cooling effectiveness is  defined as the 

3S.J. B a l l  and T.W. Kerlin, S tab i l i ty  Analysis of the Molten-Salt 
Reactor Experiment, ORNL-TM-1070 (Dec. 1965). 
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Table 2. MSm Thermal Characteristics Used in  the Power k v e l  Simulator 

Core t r a n s i t  time, sec 

Graphite time-constant, sec 

Heat exchanger t o  core t r a n s i t  time, sec a 

Core t o  heat exchanger t r a n s i t  time, sec 

Radiator t r a n s i t  time, sec 

Radiator t o  heat exchanger t r a n s i t  time, sec 

Heat exchanger t o  radiator t r a n s i t  time, sec 

Heat exchanger "effectiveness" factors a t  steady stateb: 

a 

a 

rn I 
= 0.7029 T 

P= 
rn I 

= 0.4478 so 
T 
P l  

T 
= 0.2971 Tsi 
= 0.5522 so T 

Tsi 

7.6 (two 
lumps ) 

200.0 

10 .o 

6.67 

6.67 

10.0 (two 
lumps ) 

5 -0 

Holdup time i n  heat exchanger is  included i n  the other t r a n s i t  times. a 

b . P, primary; S, secondary; i, in l e t ;  and 0, out le t .  
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- - Tsal t  i n  - 'salt out 
EC 

The salt out le t  temperature is computed from 

'salt out Tsalt i n  - Ec(Tsslt i n  - Tair i n  1 '  - - 

The calculated cooling effectiveness as a f'unction of a i r  flow ra te  and 
the l inear  approximation used i n  the simulator are shown i n  Fig. 7. 

ORNL DWG. 66-4840 

0.05 
(3 
Z 
J 
0 
0 
U 

- 

COOL I NG EFFECT IVEN ESS 
= TSALT IN- J SALT OUT 

TSALT IN - TAIR IN 4 
EC 

A PPROXfMATlON 

COOLING AIR FLOW RATE (Yo) 

Fig. 7. MSRE Radiation Cooling Effectiveness vs A i r  Flow Rate. 
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* 
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The a i r  flow rate W through the radiator  w a s  computed from a 

'a 

where 

K = constant adjusted t o  give 10 Elw cooling a t  f u l l  a i r  flow, 

APa = measured a i r  pressure-drop s ignal  across the radiator,  

= measured radiator  door positions (inches raised).  %,% 
Conversion of the analog computer voltages representing temperatures 

t o  signals compatible w i t h  the  Fbxboro ECI instruments was done w i t h  
straightforward resistance divider networks. 

The equations and analog computer c i r cu i t  used f o r  the power leve l  
simulator are given i n  Sect. 6.2. 

4. TIME REQUmD FOR SETUP OF SIMULATORS 

IIhe engineering and c ra f t  time required t o  develop, i n s t a l l ,  and 
check out the simulators and t o  t r a i n  the operators i n  t h e i r  use w a s  as 
follows (a l l  values i n  man-weeks): 

Startup Fower Level 
Simulator Simulator 

Engineering Labor 

Development 

Set up and check out 

Lecturing on use 

Craft Labor 

Ins ta l la t ion  

Total 

1.6 
0.7 
0.3 

0.3 

5. CONCLUSIONS 

1.4  
1.2 

1 .o 

0.4 
- 
4.0 

The two on-site t r a in ing  simulators were developed and operated satis- 
f ac to r i ly  as par t  of the  MSRE operator t ra in ing  program. 
obvious function of t ra ining the operators, the simulators served as a 

Besides the  
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means of checking out the reactor instrumentation and control system, the 
operating procedures, and the rod and radiator-door drives. Some minor 
modifications w e r e  made t o  the system as a r e su l t  of t h i s  experience w i t h  
the  simulators. 

All manipulations required t o  operate the simulated reactor were done 
from the reactor console, and the readout devices were par t  of the standard 
reactor instrumentation. 
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6 .  APPENDIX 

6.1 Details of Startup Simulation 

The neutron kinet ics  equations are 
, 
b 

5 = 
d t  i* [ k ( l  - 4) - 11 +I hiCi + S , 

where 

n = neutron population, 

t = t i m e ,  sec, 

1* = prompt neutron l ifetime, sec, 

k = reactor multiplication, 

& = t o t a l  delayed neutron fraction, 

p i  

'i 

ci - - it' precursor population, 

= effect ive delayed neutron fraction for i t h  precursor group 
with fuel sal t  circulating, 

decay constant f o r  i t h  precursor group, = 

S = rate of neutron production by source. 

R e w r i t e  Eqs. (1) and (2 ) ,  assuming kpT M & and -- 1* - - I* * - b f 3 - i  nBi 

"Pi dCi - - - - hiCi * 
- 

d t  1* 

Divide EQs. ( 3 )  and (4) by n: 
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6 
B, +I 'iCi 6k - - 1 d n  - 

G a t  - l* n n  
i=1 

1 dCi - Pi AiCi - - -  
n d t  l* n 

Define new variables: 

dn 

n 
M = - -  - reciprocal period, 

S w = -  
n 

kSubsti tute into a s .  ( 3 ' )  and (4'): 
6 

- P i  p - 1 . V .  - mi . dVi 
- -  
d t  1 1  

(3'  ) 

(4' 1 

( 5 )  

%e usual method of computing the source term is as follows: noting 
tha t  Wn = S and 

therefore 

or 

The analog computer can usually solve a f i r s t -order  d i f f e ren t i a l  
equation such as EQ. (7) f o r  W; however i n  t h i s  case, W becomes so small 
when n >> S that the voltage representing W i s  within the  noise leve l  of 
the amplifier, so  fur ther  computation w i t h  it i s  meaningless. 
t h i s  problem, the  relationship between W and log n was approximated as 
shown i n  Fig. 8. 

To avoid 
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6.2 Details of Power Level Simulation 

6.2.1 Neutron Kinetics Equations 

Equations (1) and (2)  of Sect. 6.1,with two delayed-neutron precursor 
groups, were used. An analog c i rcu i t  (Fig. 10) developed many years ago5 
w a s  used t o  solve these equations. This c i r cu i t  i s  superior 30 most of 
those published i n  the l i t e ra ture ,  mainly because of the  way in  which the 
amplitude scaling is  accomplished. 

A key point in  the scheme for  simulating the equations i s  the use of 
a small feedback capacitor for  the integration of the neutron level  equa- 
t ion,  ra ther  than solving d i rec t ly  for  dn/dt and t h  n integrating with a 
conventional large-feedback-capacitance integrator .? In Fig. 10, ampli- 
f i e r  1 (which solves fo r  n )  has a feedback capacitor of 10 I* w f .  The 
amplifier gain i s  1/10 1* Rin(sec-l), where Rin is  i n  megohms. With the 
assumption tha t  a l l  input res i s tors  are  0.1 megohm, Eq. 1 can be rearranged 
t o  show the desired form of the inputs t o  amplifier 1, as follows: 

(kn - knp, - n + l*AIC1 + 1*X2C2). (8 1 dn 1 
dtF 

The quantity kn is  generated from n and 6k as shown i n  Fig. 10. Typically 
k w i l l  vary between 1.005 and 0.98 f o r  control studies.  
inherent inaccuracy of the multiplier, it i s  advantageous t o  l e t  the f u l l -  
scale output of the (6k x n )  multiplier be only a few percent of kn. 
the simulator, the voltage representing zero 6k w a s  offset ,  i . e . ,  
-1.5% < 6k I; +0.5$, because of the apparent deadband i n  the quarter-square 
multiplier when one input oprates around zero vol ts .  
i s  generated from 

Owing t o  the 

In 

The quantity kn& 

0.1 kn x 100 pT x 0.1 
1 J U 

pot 2 se t t ing  1 megohm input 
t o  amplifier 1 

the gain reductions thus allowing a reasonably large gain se t t i ng  on pot 2. 

The 1* AiCiterms a re  obtained by first taking the Iaplace transform 
of EQ. 2; 

which rearranged is  

5By E.R. Wnn (deceased), Instrumentation and Controls Division. 
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Fig. 10. Analog Circuit Designed by E.R. Mann for Neutron Kinetics 
Equations. t 
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where S is  the Laplacian argument. 

Solving f o r  the output of integrator 4 [e(4)]: 

i- 0.1 hi kn = 9 4 )  - - 5 ” ( 4 )  
- de (4 ) 

d t  

Multiplication of e by 100 pi gives -10 (4 1 
which is  seen from Eq. ( 9 )  t o  equal -10 l*A.C.  as required f o r  generating 
dn/dt i n  Eq. (8). 
gains on the pi pots could be increased. 

410’ 
and thus w i l l  have a negligible e f fec t  on the  response of n fo r  the slow 
variations normally encountered i n  control studies.  Under these condi- 
t ions the negligible e f fec t  of t h i s  capacitor implies that the neutron 
kinet ics  are independent of 1*, and f o r  m precursor groups, the neutron 
kinet ics  can be described by m d i f fe ren t ia l  equations, ra ther  than (m + 1) 
equations. This simplification i s  useful when the kinet ics  equations are 
solved on a d i g i t a l  computer, because the maximum computation time inverval 
is usually governed by the l*/& time constant and must be made qui te  small 
t o  give stable (and accurate) answers. 

Again, because the ampltfier gains were reduced, the 

-4 Tis c i r cu i t  c lear ly  shows tha t  fo r  small values of  l* (e.g., 10 
sec)  the feedback capacitor fo r  amplifier 1 w i l l  be very small 

6.2.2 Core Thermal Dynamic Equations 

The fue l  f l o w  i n  the core is approximated by two f i rs t -order  lags i n  
series,  and heat t ransfer  takes place between the first fuel  lump and the 
graphite. 
seven percent of the nuclear heat is generated in  each fue l  lump. 
remaining 6$ is  generated i n  the graphite. 
used f o r t h e  core are as follows: 

The nuclear importancesof the two fuel lumps are equal. Forty- 
’Ihe 

The heat balance equations 

a. F i r s t  fue l  lump 

dFc - -  e - 0.263 ? + 0.017 FG + 0.246 Tci + 0.0329 n; d t  C 
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b.  Second fue l  lump 

U A  - -  co - - 0.263 Tco +- 0.263 Fc + 0.0329 n; a t  

c. Graphite 
- - 

- -  - - 0.005 FG + 0.005 Fc + 0.00084 n. 
dTG 
a t  

Temperatures are i n  OF, time i s  i n  seconds, and neutron leve l  n i s  in  
megawatts. 

As discussed previously, the lags due t o  holdup and heat t ransfer  
i n  the loop external t o  the core were represented by six f i rs t -order  lags. 
Each l ag  is  described by the equation 

a x - 1  
at T - - (xin - Z) , 

where T is the time constant of the lag. 

6.2.3 Radiator Effectiveness 

The plot  of radiator cooling effectiveness vs air  flow w a s  calculated 
by 

i 
- 1  

1 - exp [-(1 - Nl)N2] 

1 - N 1 exP‘ [-(1 - N1)N2] 
Tsalt i n  - Tsalt out - 

> - - 
Ec - Tsal t  i n  - Tair i n  

where 

“‘p )salt 
N1 = (WCp)air 

W = mass flow rate, lb/sec, 

C = specific heat, Btu/lb-OF, % 

P 

U = overall  heat t ransfer  coefficient,  Btu/sec-ft - F, t 
2 0  

A = heat t ransfer  area, ft2. d’ 
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Since a i r  flow i s  perpendicular t o  the tubes, the heat t ransfer  coefficient 
on the air  side was assumed t o  vary as the 0.6 power of flow ra t e .  

6.2.4 Xenon Poisonina 

Even when time scaled by a factor  of 10, the xenon t ransients  a re  very 
very slow, and care had t o  be taken t o  avoid large errors  due t o  integrator 
d r i f t .  Manual dr i f t -control  pots were added t o  both integrators i n  the 
c i r cu i t .  

Fuel xenon was assumed t o  build up a t  a ra te  equal t o  iodine production, 
since the xenon stripping time-constant is small compared w i t h  those for 
decay, burnup, and diffusion t o  the graphite. 

Since simulation pressed the l imitations of the  accuracy of the com- 
puter,  some of the coefficients had t o  be f i e ld  s e t  t o  give proper steady- 
s t a t e  output values. 
i n  speeding up the computation even more, it was not done because we 
d idn ' t  want t o  have the xenon dynamics confused with the reactor thermal 
dynamics. 

Although there would have been a number of advantages 

Fig. 11 is  the analog computer c i r cu i t  used fo r  the power leve l  
simulator. 

. 
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Fig. 11. Analog Computer Circuit for the Fder Level Simulator. 
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