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PREFACE 

This r ep  rt i s  1 opera- 

t i o n  of the  Molten S a l t  Reactor Experiment. 

issued with t h e  exceptions noted. 

All t h e  repor t s  have been 

om-TM- 728 

ORNL-'I!M-729* 

Om-TM-732 

om-TM-2111 

ORNL-TM-907* 

ne of a s e r i e s  tha ,  describes the  design an 

MSRE Design and Operations Report, Par t  I, 
Description of Reactor Design by 
R.  C .  Robertson 

MSRE Design and Operations Report, Par t  11, 
Nuclear and Process Instrumentation, by 
J. R.  Tallackson 

MSRE Design and Operations Report, Par t  111, 
Nuclear Analysis, by P. N.  Haubenreich, 
J. R.  Engel, B. E .  Prince, and H. C .  Claiborne 

MSRE Design and Operations Report, Part IV, 
Chemistry and Materials, by F. F.  Blankenship 
and A .  Taboada 

MSRE Design and Operations Report, Par t  V, 
Reactor Safety Analysis Report, by S. E. Beall, 
P. N. Haubenreich, R.  B. Lindauer, and 
J. R.  Tallackson 

MSRE Design and Operations Report, Part V-A, 
Safety Analysis of Operation with 23%, by 
P. N. Haubenreich, J. R.  Engel, C .  H. Gabbard, 
R.  H. Guymon, and B. E. Prince 

MSRE Design and Operations Report, Par t  V I ,  
Operating L i m i t s ,  by S. E. Beal l  and 
R.  H. Guymon 

MSRE Design and Operations Report, Part V I I ,  
Fuel Handling and Processing Plant, by 
R.  B. Lindauer 

* 
These repor t s  a r e  i n  the  process of being issued. 

These repor t s  w i l l  not  be issued, 
** 
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ORNL-’llM-%8 MSRE Design and Operations Report, Pa r t  V I I I ,  
Operating Procedures, by R .  H. Guymon 

om-m-99 MSFE Design and Operations Report, Part IX,  
Safety Procedures and Rnergency Plans, by 
A .  N. Smith 

H- 
om-TM- 910 MSRE Design and Operations Report, Part X, 

Maintenance Equipment and Procedures, by 
E. C.  H i s e  and R. Blumberg 

om-TM-911 MSRE Design and Operations Report, Part XI,  
T e s t  Program, by R. H. Guymon, 
P. N. Haubenreich, and J. R. Engel 

MSRE Design and Operations Report, Par t  XII, 
L i s t s  : Drawings, Specif icat ions,  Line Schedules, 
Instrument Tabulations (Vol. 1 and 2) 
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INTRODUCTION 

. 

I 

The Molten S a l t  Reactor Experiment i s  an important s t e p  i n  a pro- 

j e c t  whose u l t imate  goal  i s  a thermal breeder reac tor  operating on the  

thorium-~ranium-233 cycle.  

t ens ive  developnent of molten sal t  technology i n  the  Ai rc ra f t  Nuclear 

Propulsion Program of the  1950 1s. 

t he  molten s a l t  technology had advanced t o  the  point  t h a t  many of t h e  

f ea tu res  of t h e  proposed breeders could be incorporated i n  a reac tor  t h a t  

could be operated sa fe ly  and r e l i ab ly  and could be maintained when neces- 

sa ry .  

i n  May 1966, and now has passed 8000 equivalent full-power hours of opera- 

t i on .  I n  a l a rge  measure, it has met i t s  object ives .  It i s  now proposed 

t o  extend i t s  usefulness by experimental operation of  a s o r t  not contem- 

p la ted  i n  t h e  o r i g i n a l  planning and sa fe ty  ana lys i s .  In order t o  obtain 

information d i r e c t l y  r e l a t i n g  t o  the  neutronic and s t a b i l i t y  analyses of 

23% breeders, we propose t o  remove the  present uranium from t h e  f u e l  s a l t  

and s u b s t i t u t e  23%. 

would be taken t o  f u l l  power again and operated f o r  t h e  b e t t e r  p a r t  of a 

year t o  obtain data  on 23% cross  sect ions.  

The breeder pro jec t  i s  the  outgrowth of ex- 

The MSRE was b u i l t  t o  demonstrate t h a t  

The MSRE began nuclear operation i n  June 1965, reached f u l l  power 

After the  replacement of t he  uranium, t h e  r eac to r  

This repor t  presents t he  data and the  analyses t h a t  have l e d  us  t o  

conclude t h a t  it i s  safe  t o  load t h e  MSRE with 23% and pursue t h e  pro- 

gram of experimental operation. 

t h e  o r i g i n a l  sa fe ty  ana lys i s  report2 for much of t h e  de ta i led  descr ip t ion  

of t h e  r eac to r  components and the  s i t e .  

instruments and controls  i s  being issued concurrently,3 so  no attempt i s  

It leans on the  MSRE Design Report’ and 

A comprehensive repor t  on the  

’R. C .  Robertson, MSRE Design and Operations Report, Par t  I - 
Description of Reactor Design, om-m-728 (January 1965) . 

“S. E. Beall, P. N .  Haubenreich, R .  B. Lindauer, and J. R .  Tallackson, 
MSRE Design and Operations Report, Par t  V - Reactor Safety Analysis Report, 
ORNL-TM-732 (August 1964). 

3J. R. Tallackson and R.  L. Moore, MSRE Design and Operations Report, 
Par t  1 1 - A  - Nuclear and Process Instrumentation, Om-TM-729 (January 1968) . 
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made here t o  give a complete descr ipt ion of those systems. 

repor t  does include i s  a summary of re levant  experience and new informa- 

t i o n  and an assessment of t he  sa fe ty  of operation with 23?J, taking i n t o  

account t h a t  experience, t h e  physical condition of t h e  system, and the  

d i f f e r e n t  neutronic cha rac t e r i s t i c s  wi$h 23?J i n  place of 235. 

What t h i s  
W 

1 
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1. REACTOR SYSTEM 

A t  t he  time t h e  MSRE design report  and t h e  o r ig ina l  s a fe ty  ana lys i s  

repor t  w e r e  issued, construction of t he  reac tor  was es sen t i a l ly  complete. 

The descr ipt ion of t he  components and the  mechanical systems given i n  

those repor t s  therefore  i s  as -bui l t ,  i s  s t i l l  va l id  i n  a l l  e s sen t i a l  

respects,  and w i l l  not be repeated here. 

materials, however, as a r e s u l t  of fu r the r  t e s t i n g  and experience and t h i s  

i s  discussed below. 

There i s  new information on t h e  

1.1 Fuel and Primary System Materials 

1.1.1. S a l t s  

The o r ig ina l  sa fe ty  analysis  considered the  possible  use of f u e l  

salts  of t h ree  d i f f e ren t  compositions. One of these, Fuel C, has been 

used throughout a l l  the operation t o  date, and the  composition therefore  

has been proved i n  use. 

material, d i lu t ed  with 23% t o  provide a t o t a l  uranium concentration of 

about 0.9 mole percent. 

uranium, then 23%F4-LiF eu tec t ic  w i l l  be added and nuclear operation r e -  

sumed. With most of t he  non-f i ss i le  uranium removed, t he  operating 

uranium concentration with 23%J w i l l  be about 0.2 mole percent, otherwise 

t h e  chemical composition of the f u e l  sa l t  w i l l  be p rac t i ca l ly  unchanged. 

There should be no s igni f icant  difference i n  the  chemical s t a b i l i t y  of 

t h e  sa l t .  
a t  t h a t  t i m e  it was considered possible  tha t  t h e  f i s s i o n  products from 

one f i s s i o n  might use up more than four  f luo r ine  atoms or t h a t  f l uo r ine  

might be l o s t  by some other  process, causing some reduction of UF, t o  UF,. 

This process, i f  allowed t o  continue, could lead  ul t imately t o  precipi-  

t a t i o n  of meta l l ic  uranium. The higher concentration of UF, gave more 

time for careflxl ana lys i s  and determination of t he  ac tua l  s i t ua t ion  before 

uranium prec ip i ta t ion  could occur. 

ducts from one f i s s i o n  t i e  up l e s s  than four f luor ine  atoms, not more, 

and there  i s  no s ign i f i can t  l o s s  of f luo r ine  by other  reactions,  so t he  

need for UF4 much i n  excess of t he  mininlm required f o r  c r i t i c a l i t y  does 

The present mixture contains 235U as the  f i s s i l e  

This mixture w i l l  be f luor ina ted  t o  remove t h a t  

The higher uranium concentration was desired o r ig ina l ly  because 

It turned out  t h a t  t he  f i s s i o n  pro- 
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not ex i s t .  

gradually oxidizes some of t he  UF3 i n  t he  sal t  t o  UF4.  

ment must be maintained t o  prevent a t t a c k  of t h e  container w a l l s ,  so  t h e  

U F 3  concentration i s  held a t  approximately one percent of t he  t o t a l  

uranium by exposing a rod of beryllium metal i n  the  sampler-enricher a t  

i n t e rva l s  of severa l  weeks. 

The s l i g h t  amount of f luor ine  l i be ra t ed  as a r e s u l t  of f i s s i o n  

A reducing environ- 

(The reac t ion  i s  2 UF4 + Be 2 U F 3  + BeF2.) 

During the  operation of t h e  MSRE, corrosion products and f i s s i o n  pro- 

ducts i n  the  fuel s a l t  have not b u i l t  up t o  concentrations t h a t  could have 

any deleter ious e f f e c t  on chemistry. Moisture has been ef fec t ive ly  ex- 

cluded from t h e  salt  systems as evidenced by f u e l  sa l t  analyses which have 

consis tent ly  shown only about 50 ppm oxide. Since t h i s  i s  fa r  below t h e  

s o l u b i l i t y  of Zr02, no prec ip i ta t ion  of Z r 0 2  i s  expected. Fluorination 

of t he  sa l t  t o  remove the  o r ig ina l  charge of uranium w i l l  produce ad- 

d i t i o n a l  corrosion products, but  t he  sal t  w i l l  be given fu r the r  treatment 

(probably reduction and f i l t r a t i o n )  t o  insure t h a t  concentrations are 

acceptably l o w  when the  s a l t  i s  returned f o r  use i n  the  reac tor .  

I n  summary, no problems have been encountered with t h e  f u e l  sa l t  

chemistry and none a r e  expected i n  the  23% operation. 

1.1.2 S a l t  Container Mater ia l  

All t he  s a l t  piping and vessels  i n  the  MSRE are made of t h e  nickel-  

base a l loy  Hastelloy-N (a l so  ca l l ed  INOR-8) which w a s  espec ia l ly  developed 

t o  be corrosion-resis tant  i n  molten f luor ides  and t o  have good high- 

temperature physical  propert ies .  

s ince the  construction of the  MSRE have shown t h a t  it is  indeed corrosion 

r e s i s t an t ,  but  t h a t  ce r t a in  of i t s  high-temperature physical propert ies  

su f fe r  under prolonged neutron i r r ad ia t ion .  

summarized i n  Section 9.2.4. 

Experience with and t e s t i n g  of Hastelloy-N 

Corrosion experience i s  

Effects  of i r r ad ia t ion  a r e  discussed below. 

I r r ad ia t ion  of Hastelloy-N has l i t t l e  e f f e c t  on t h e  y i e l d  s t rength  

and t h e  secondary creep rate, bu t  causes d r a s t i c  reduction i n  the  rupture  

d u c t i l i t y  and the  creep rupture l i f e .  

may be reduced from st rains  of 8 - 12% t o  as l i t t l e  as 0.5 t o  4%. 
l i f e  may be reduced by as much a s  a f a c t o r  of t en  a t  high stress leve ls .  

The damage i s  believed t o  stem from n-a react ions producing helium t h a t  

co l l ec t s  i n  grain boundaries and promotes intergranular  cracking. This 

Rupture d u c t i l i t y  i n  creep t e s t s  

Rupture 

I 

a- 
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t 

type of damage i s  qu i t e  general  among iron- and nickel-base s t r u c t u r a l  

a l loys  and can be caused by n ,a  react ions of fas t  neutrons as wel l  as by 

thermal neutron absorptions i n  boron. However, i n  t h e  Hastelloy-N i n  the  

MSRE, helium production i s  predominantly from boron. 
damage i s  primarily a function of thermal neutron fluence and p rac t i ca l ly  

sa tu ra t e s  a t  n/cm2 or l e s s .  

Thus t h e  degree of 

A comparison of s t ress-rupture  cha rac t e r i s t i c s  of i r r ad ia t ed  and un- 

i r r ad ia t ed  Hastelloy-N i s  given i n  Figure 1.1. 

served i n  these t e s t s  a r e  shown i n  Figure 1.2. 

were from four  commercial heats of metal used i n  the  fabr ica t ion  of t h e  

MSRE reac tor  vessel .  

August 1966 a f t e r  exposure t o  a thermal neutron fluence ranging from 

0.5 x lo2' t o  1.3 x lo2' n/cm2 (Reference 4) .  
s ince  been i r r ad ia t ed  i n  the  MSRE core t o  higher doses, but  these  speci-  

mens were of heats  modified by t h e  addi t ion of 0.5% T i  or Zr t o  g rea t ly  

reduce r ad ia t ion  damage and so  a r e  not d i r e c t l y  re levant  t o  the  condition 

of t h e  MSRE vessel . )  

i n  t h a t  reac tor  t o  1 .4  x lo2' t o  5.2 x lo2' n/cm2. 

The rupture strains ob- 

The i r r ad ia t ed  specimens 

The specimens i r r ad ia t ed  i n  MSRE were removed i n  

(Hastelloy-N specimens have 

Those marked ORR were exposed i n  a helium atmosphere 

Figure 1.3 i l l u s t r a t e s  t h a t  y i e ld  s t rength  was not a f fec ted  and t h a t  

u l t imate  s t rength  was not d r a s t i c a l l y  redwed by the  i r r a d i a t i o n  i n  the  

MSRE. The t o t a l  elongation i n  these t e n s i l e  tests was reduced, but  not 

near ly  so  much as i n  the  creep-rupture t e s t s .  

(1200°F) t h e  elongation was  13% bn the  t e n s i l e  test  a t  a s t r a i n  r a t e  of 

0.05 min-' compared t o  elongations of 1 t o  4% i n  t he  longer-term t e s t s  

shown i n  Fig. 1 .2 .  Figure 1 . 4  shows t h a t  there  was p rac t i ca l ly  no d i f -  

ference between the  secondary creep r a t e  of i r r ad ia t ed  specimens and un- 

i r r ad ia t ed  cont ro l  specimens. 

For example, a t  650"c 

The e f f e c t s  of neutron i r r ad ia t ion  must be considered aga ins t  the  

background of allowable s t r e s ses  used i n  the  MSRE design and the  a n t i c i -  

pated serv ice  l i f e  of t he  reac tor .  When the  MSRE was designed, Hastelloy-N 

4H. E. McCoy, Jr., An Evaluation of t he  MSRE Hastelloy-N Surveil lance 
Specimens - F i r s t  Group, ORNL-Dl-1997 (November 1967) . 
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had not ye t  been considered by the ASME Code Committee, so a curve of 
maximum allowable s t r e s s  as a function of temperature w a s  prepared using 

code c r i t e r i a  and t h e  physical propert ies  of unirradiated Hastelloy-N. 

Below 900°F the  allowable s t r e s s e s  were governed by t h e  tens i le  and y i e l d  

strengths,  from 900 t o  1150°F the  100,000-hour rupture s t r e s s  was l imit ing,  

and above 1150°F t h e  stress t h a t  produces a secondary creep r a t e  of 0.1% 

i n  10,000 hr governed. Subsequently t h e  ASME Boiler and Pressure Vessel 

Code Committee approved Hastelloy-N f o r  construction under t h e  Unfired 

Pressure Vessel Code and the  Nuclear Vessel Code. Maximum allowable 

s t r e s s e s  approved under the  codes are e s s e n t i a l l y  those on t h e  MSRE design 

curve. 

3500 ps i .  Actually, i n  t h e  design of the  MSRE, primary s t r e s s e s  were 

generally l imited t o  2750 p s i  o r  l e s s  except i n  a f e w  locat ions where lower 

temperatures j u s t i f i e d  higher allowable s t r e s s e s .  

5 

Maximum allowable primary stress a t  1200°F is  6000 p s i  and a t  1300°F, 

The data i n  Fig. 1.1 suggest t h a t  the  difference i n  the  rupture  l i f e  

of i r r a d i a t e d  and unirradiated Hastelloy-N decreases as the  s t r e s s  i s  re -  

duced and that it may be very small a t  the  MSRE design s t r e s s e s .  

Implications of the e f f e c t  of i r r a d i a t i o n  on the  s e r v i c e a b i l i t y  of 
t h e  MSRE primary containment are discussed i n  Section 9.2.5. 

1.1 .3  Moderator Material  

Further information on t h e  MSRE graphite has come from exposure of 

survei l lance specimens i n  the  MSRE core (discussed i n  t h e  next sect ion)  

and from i r r a d i a t i o n s  i n  the ORR t o  doses far  beyond those an t ic ipa ted  i n  

t h e  MSRE. The i r r a d i a t e d  specimens showed p r a c t i c a l l y  no dimensional 

changes a t  doses t h a t  may be reached i n  t h e  MSRE and no other  changes of 

any consequence t o  the  MSRE. 

1.1.4 Compatibility of S a l t ,  Hastelloy-N, and Graphite 

Analyses of several  hundred samples of f u e l  salt ,  taken over more 

than two years of operation, and examination of two sets of metal and 

5Robertson, op.cit ,  pp 119 - 120. 
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graphi te  specimens exposed for thousands of hours i n  the  MSRF core have 

f u r t h e r  demonstrated t h e  compatibil i ty of t h e  fuel ,  the  moderator, and the  

container materials. 

In te rac t ion  between the  sa l t  and the  Hastelloy-N appears t o  have been 

l imi ted  t o  deposit ion of an extremely t h i n  layer  of noble metal f i s s i o n  

products on loop surfaces and an inconsequential amount of corrosion, i . e . ,  

leaching of chromium. This i s  discussed nore f u l l y  i n  Section 9.2.4. 
Two sets of graphi te  specimens exposed i n  the  MSRE core showed no 

a t t a c k  by t h e  s a l t  i n  2800 and 4300 hr .  

f in i sh ,  no in t rus ion  of sa l t  i n t o  the  pores and no fu r the r  cracking of t he  

graphi te .  Radiochemical analyses and examinations with electron micro- 

probes showed t h a t  noble metal f i s s ion  products were deposited a t  t h e  sur- 
face  (less than 0.3 m i l  deep) and products of xenon and krypton decay were 

d i s t r ibu ted  throughout t he  specimens. Although of g rea t  i n t e re s t ,  t he  

e f f e c t s  of these f i s s ion  products i n  the  MSRE are ins igni f icant .  

There w a s  no change i n  the  surface 

Where graphi te  and Hastelloy-N a r e  i n  d i r e c t  contact i n  the  MSRE core, 

some carburizat ion of the  metal was expected: Thus, when the  core w a s  as- 

sembled, s a c r i f i c i a l  metal i n s e r t s  were included a t  contact points .  The 

survei l lance specimens showed t h a t  some react ion does take place where 

surfaces a r e  i n  contact.  

surface t h a t  was  i n  contact with graphi te  through 4800 h r  a t  1200°F i n  

the  f i rs t  set of survei l lance specimens. (The a f fec ted  layer  i s  small 

compared t o  t h e  thickness of t he  i n s e r t s  between graphi te  and s t r u c t u r a l  

metal i n  t h e  core.)  

Figure 1 .5  i s  a sect ion through a Hastelloy-N 

Subs t i tu t ion  of 23% should i n  no way a f f e c t  t he  compatibil i ty of t he  

materials i n  the  primary system. 

1 .2  System Components 

There has been no modification of any of t he  reac tor  components 

described i n  Section 1 .2  of the  o r ig ina l  safety analysis  report ,  so  the  

descr ipt ions given there  are s t i l l  va l id .  The heat  t r ans fe r  performance 

of both the  primary heat exchanger and the coolant rad ia tor  proved t o  be 



Figure 1.5. Hastelloy-N SUr from Exposed MSIiE Surveillance 
Samples. Surface deposit from Ha y-N in near contact with 
graphite. 

\ 



less than predicted, however.6 

t h e  s teady-state  reac tor  power has been l imited t o  about 7.5 Mw instead 

of t h e  10 Mw o r ig ina l ly  contemplated i n  the  sa fe ty  ana lys i s .  

The important consequence of t h i s  i s  t h a t  

2 CONTROLS AND INSTRUMENTATION 

The system of instrumentation and controls  remains e s sen t i a l ly  as 

described i n  t h e  o r ig ina l  sa fe ty  analysis  report ,  and experience has 

shown t h a t  it performs a s  intended. 

ever, notably the  addi t ion of a period scram of the  cont ro l  rods.  

t h e  change t o  ''% has some cont ro l  implications.  

discussed i n  t h i s  section, which follows the  out l ine  of t h e  o r i g i n a l  repor t .  

There have been a f e w  changes, how- 

Also 

These points  w i l l  be 

2.1 Control Rods and Drives 

The mechanical descr ipt ion of t he  MSRE cont ro l  rods and dr ives  pre- 

sented i n  t h e  o r ig ina l  s a fe ty  ana lys i s  repor t  i s  s t i l l  va l id  s ince no 

changes have been made. 

The measured worth of the  cont ro l  rods with 235U f u e l  i n  t h e  reac tor  

i s  s l i g h t l y  grea te r  than was p r e d i ~ t e d . ~  

t o  be 2.26% Sk/k, compared t o  a predict ion of 2.11% 6k/k. 
worth of three rods w a s  5.59% 6k/k; t he  predicted worth, 5.46%. 
23% i s  subs t i tu ted  for t h e  present par t ia l ly-enriched uranium, the  neutron 

d i f fus ion  length w i l l  be longer and the rod worth grea te r  by a f a c t o r  of 

1.3. 
7.01% 6k/k. 
switches, with the  c r i t i c a l  concentration of uranium i n  the  fue l .  

The worth of one rod was found 

The observed 

When 

The worth predicted for one rod i s  2.75% 6k/k; for t h ree  rods, 

(These worths a r e  for t h e  51-inch t r a v e l  between l i m i t  
The 

%SR Program Semiann. Progr. Rept. Aug. 31, 1966, ORNL-4037, 
PP. 35-39. 

7B. E. Prince, e t  a l . ,  Zero-Power Physics Experiments on the  MSRE, 
ORNL-4233 (February 1968) . 
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one-rod worth is  with the  other  two rods f u l l y  withdrawn). 

shows measured and predicted worth curves with t h e  o r i g i n a l  fuel and t h e  

predicted curve with 23?J fuel. 

Figure 2.1 

Experience has sho-wn t h a t  mechanically the  rods a r e  qu i t e  r e l i a b l e .  

There have been 28 unscheduled control-rod scrams (through November 1967) 
when fuel sal t  was i n  t h e  reac tor  vessel .  

var iab le  ac tua l ly  exceeding t h e  scram se tpoin t  .) 
purposes brought t he  t o t a l  f o r  each rod t o  w e l l  over 100 s c r a m .  

has a rod f a i l e d  t o  drop on request.  

(None was caused by a process 

Scrams f o r  t e s t i n g  

Never 

Rod drop time with t h e  core hot has ranged from 0.97 down t o  0.71 sec.  

depending on the  rod and i t s  length of p r i o r  service.  

more f l e x i b l e  with use, leading t o  shor te r  drop times.) 

corresponding t o  t h e  delay and acce lera t ion  assumed i n  t h e  safe ty  ana lys i s  

is  1 .4  sec. One rod dr ive  was replaced i n  September 1966 because the  drop 

time was slower than normal. 

and during t h e  shutdown with t h e  core and rod cold t h e  drop time approached 

1.3 sec.  After  replacement of t he  rod i tself  (see below) did not improve 

t h e  drop time, t he  cause of t he  slow drop w a s  found t o  be a bent  a i r  tube 

i n  t h e  dr ive  u n i t  t h a t  rubbed the  ins ide  of t he  hollow rod. 

(The rod becomes 

The drop time 

It had been 0.96 sec. a t  t h e  end of a run 

Two of t he  three  rods cur ren t ly  i n  the  reac tor  have been i n  serv ice  

s ince the  s t a r t  of nuclear operation i n  May 1965. The rod tha t  was re -  

placed i n  September 1966 had developed a tendency t o  hang on withdrawal 

about t w o  inches above the  f i l l y  inser ted  posi t ion.  The hanging was a t -  

t r i bu ted  t o  in te r fe rence  between a sharp corner on the  bottom f i t t i n g  on 

t h e  rod and the  lower end of a guide r i b  i n  the  rod thimble. 

corners of t he  end f i t t i n g  on t h e  replacement rod were rounded and no 

fu r the r  d i f f i c u l t y  has been encountered. Aside from t h i s  instance t h e  

rods have always moved f r e e l y  i n  e i t h e r  d i rec t ion .  

The gadolinium loading i n  the  poison elements i s  such t h a t  t h e  rods 

should remain black t o  neutrons f o r  much longer than t h e  expected opera- 

t i o n  of t he  MSRE. 

change i n  s e n s i t i v i t y  due t o  poison burnout. 

The upper 

In  Ju ly  1967, t e s t s  ve r i f i ed  t h a t  t he re  had been no 

I 

r 
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2.2 Safety Instrumentation 

An up-to-date descr ip t ion  of t h e  sa fe ty  system i s  given i n  Par t  1 1 - A  

of t he  MSRE Design and Operations Report, recent ly  issued.8 

scram was added t o  t h e  safe ty  system described i n  t h e  o r i g i n a l  s a fe ty  

ana lys i s  report .  

of a pos i t ive  period shor te r  than 1 second. A period s igna l  derived from 

t h e  output of a sa fe ty  chamber i s  included, along with f l u x  l e v e l  and core 

o u t l e t  temperature, i n  each of t h ree  t r i p  channels. 

connected so a t r i p  on any two channels scrams the  rods.  

Shortly before the  beginning of nuclear operation with 23%, a period 

The cont ro l  rods a r e  scrammed when the re  a r e  ind ica t ions  

These channels are 

Other changes made a f t e r  t he  o r ig ina l  s a fe ty  ana lys i s  repor t  was 

issued are i n  the  f l u x  l e v e l  t r i p s .  

7.5 Mw, t h e  high l e v e l  t r i p  was set down t o  11.25 Mw (150% of 7.5 Mw) . 
T h i s  i s  the t r i p  point  i f  the  f u e l  pump i s  running. 

off ,  t h e  l e v e l  t r i p  points a r e  automatically reduced t o  11.25 kw, and each 

of t h e  th ree  channels must be r e s e t  manually t o  t h e  higher l e v e l  after t h e  

pump i s  s t a r t ed .  

After full power proved t o  be about 

If t h e  f u e l  pump i s  

Other than t h e  changes described above, there  have been no changes i n  

the  functions of t he  sa fe ty  system s ince  t h e  o r i g i n a l  s a fe ty  ana lys i s .  A s  

w i l l  be  shown i n  Chapter 9, no changes w i l l  be necess i ta ted  by the  subs t i -  

t u t i o n  of 23?J f o r  t h e  23% i n  t he  f u e l .  

2.3 Control Instrumentation 

Since the  time of t h e  o r ig ina l  sa fe ty  ana lys i s  report ,  severa l  changes 

have been made i n  the  cont ro l  system. 

procedures, but  none a r e  of s ignif icance from t h e  standpoint of t he  sa fe ty  

ana lys i s .  

These changes a f f e c t  normal operating 

No changes a r e  an t ic ipa ted  because of t h e  23?J loading. 

'J. R. Tallackson and R.  L .  Moore, MSRE Design and Operations Report, 
Part 1 1 - A  - Nuclear and Process Instrumentation, ORNL-"-729 (January 1968) 



2.4 Neutron Sources 

Y 

The presence of a neutron source i s  important because of i t s  influence 

on t h e  course of excursions from r e a c t i v i t y  addi t ions t h a t  begin with the  

r eac to r  subc r i t i ca l . g  

2.4.1 Sources Inherent i n  Fuel S a l t  

Alpha p a r t i c l e s  emitted by heavy elements i n  t h e  f u e l  salt  i n t e r a c t  

with t h e  lithium, beryllium and f luo r ine  t o  produce an  abundant source of 

neutrons within the  sal t .  I n  t he  o r ig ina l  f u e l  s a l t  most of t h e  energetic 

alpha p a r t i c l e s  come from t h e  decay of 23%J, which cons t i t u t e s  0.3% of the  

uranium. The neutron source i n  the  amount of f u e l  salt  required t o  f i l l  

t he  cQre w a s  predicted t o  be  4 x lo5 n/sec. (Ref. 10) This s t rength  w a s  

v e r i f i e d  approximately during the  experiments a t  t he  beginning of nuclear 

operation.'l 

After  23% i s  subs t i tu ted  f o r  t he  present uranium, the  inherent 

alpha-n source w i l l  be much grea te r .  

w i l l  be higher, but  i t s  contribution t o  the  alpha-n source w i l l  be ins ig-  

n i f i c a n t  compared t o  t h a t  of t he  23?J and the  daughters of 23%. 

i s  a chain of short- l ived alpha emit ters  descending from 1.9-y 228Th whose 

a c t i v i t y  bui lds  up with t h a t  of t he  thorium following chemical pu r i f i ca t ion  

of t h e  uranium. 

with t h e  uranium w i l l  be a t  about three-fourths of sa tura t ion .  The pre- 

d i c t e d  alpha-n source i n  a core full of f u e l  sa l t  a t  t h a t  t i m e  is  

3 x lo8 n/sec, a f a c t o r  of TOO higher than i n  the  o r ig ina l  f u e l  sa l t .  

The 23% concentration i n  t h e  sa l t  

There 

I n  t h e  spr ing of 1968, t h e  228Th (and daughters) associated 

There w i l l  a l s o  be a subs t an t i a l  photoneutron source i n  t h e  f u e l  salt 

from in te rac t ion  of f i s s i o n  product gamma rays with the  beryllium. Immedi- 

a t e l y  a f t e r  high power operation, t h i s  source w i l l  e m i t  more than lo9 n/sec 

i n  t h e  core, bu t  within about a day w i l l  have decayed below t h e  predicted 

alpha-n source. 

'S. H. Hanauer, Role of Neutron Source i n  Reactor Safety, Nuclear 
Safety 4( 3) : 52-54 (March 1963). 

l op .  N. Haubenreich, Inherent Neutron Sources i n  Clean MSRE Fuel Sa l t ,  

IlB. E. Prince e t  a l . ,  Zero-Power physics Experiments on t h e  MSRE, 

ORNL-TM-~~~ (August 1963). 

ORNL-4233 (February 1968). 
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The inherent alpha-n source i s  pa r t i cu la r ly  valuable from the  stand- 

point of s a fe ty  because it i s  absolutely dependable. Wherever there  i s  

23%J, there  i s  the  neutron source. 

2.4.2 External Source 

An external  neutron source, located i n  the  thermal shield,  i s  pro- 

vided f o r  convenience. This source permits checking t h a t  t h e  nuclear 

s t a r tup  instruments a r e  working properly before t h e  f u e l  sa l t  i s  brought 

ou t  of t h e  drain tanks i n t o  the  reac tor  vessel .  After only a small 

f r a c t i o n  of t he  vesse l  i s  f i l l e d  with fue l ,  t h e  neutrons from the  inherent 

source completely overshadow t h e  e f f ec t s  of t he  ex terna l  source and give 

a strong counting rate on both t h e  wide-range channels and the  s t a r t u p  

channel. l2 

The external  source i s  an alpha-n source consis t ing of a mixture of 
241Am, 2 4 2 C ~  and Be.  

mostly from 242Cm alphas.  

tube during power operation i s  not enough t o  keep the  242Cm regenerated 

by production from the  241Am. 

with p rac t i ca l ly  the  163-d h a l f l i f e  of t he  24%m o r ig ina l ly  present .  

f i r s t  source w a s  i n s t a l l e d  i n  May 1965 and remained adequate through May 

1967. Another source of t he  same type and o r ig ina l  i n t e n s i t y  w a s  i n -  

s t a l l e d  on top of t he  f i rs t  i n  June 1967. 
through the  an t ic ipa ted  operation of t h e  MSRE. 

When the  source w a s  new the s t rength  w a s  lo8 n/sec, 

The f l u x  of f i s s i o n  neutrons a t  t h e  source 

Thus the  source decays a f t e r  i n s t a l l a t i o n  

The 

This w i l l  remain adequate 

2.5 E lec t r i c  Power System 

The e l e c t r i c  power system a t  MSRF: i s  e s sen t i a l ly  t h e  same as described 

i n  t h e  design report ,  but  some improvements have been made t o  reduce t h e  

l ikel ihood of power f a i l u r e s  in t e r f e r ing  with operation of t h e  reactor .  

These include b e t t e r  l ightning protect ion f o r  t he  13.8-kv feeder l ines ,  

i n s t a l l a t i o n  of a battery-powered 50-kva s t a t i c  i nve r t e r  f o r  uninterrupted 

instrument power, and provision of independent power supplies f o r  each of 

t he  three  channels i n  the  safe ty  system. 

12J. R .  Tallackson and R .  L. Moore, op .c i t .  

c 
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2.6 Physical Layout of Instruments and Controls 

The loca t ion  of the  reac tor  controls  and instrumentation i s  as 

described i n  t h e  o r i g i n a l  sa fe ty  analysis  repor t  (Om-TM-732). 
described w a s  t he  f i r e  protect ion system. 

three  detectors ,  each a combination of r a t e -o f - r i s e  and fixed-temperature 

( 1 3 6 0 ~ )  devices, connected t o  t h e  bui lding and p lan t  alarm system. 

dioxide f i r e  extenguishers a r e  r ead i ly  ava i lab le  t o  a l l  cont ro l  areas, 

The automatic spr inkler  system i n  the  bui lding a l s o  covers t he  cont ro l  

a reas  and computer room with fog nozzles t r iggered by 212°F f u s i b l e  plugs. 

Not 

I n  t h e  main cont ro l  area a r e  

Carbon 

3 .  PLANT LAYOUT 

The p lan t  layout was described i n  the  sa fe ty  analysis  repor t  

(ORNL-TM-732). 
repor t  and there  has been no s ign i f i can t  change from the o r i g i n a l  

descr ipt ion.  

Construction was es sen t i a l ly  complete a t  the  t i m e  of t h a t  
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4. CONTAINMENT 

The MSRE design aimed a t  - zero leakage from the  system of piping and 

vessels  t h a t  i s  t h e  primary containment for t h e  f i s s i o n  products. In  

addition, a secondary containment system was provided t o  l i m i t  t h e  r e l ease  

of f i s s i o n  products t o  t h e  environs i n  t h e  event of a f a i l u r e  i n  t h e  p r i -  

mary containment. Str ingent  leakage c r i t e r i a  had t o  be m e t  by t h e  secon- 

dary containment, because the  po ten t i a l  re lease  from the  primary contain- 

ment i n  t h e  u l t imate  accident might conceivably amount t o  p rac t i ca l ly  t h e  

e n t i r e  inventory i n  the  reac tor .  

The MSRE has met t he  c r i t e r i o n  f o r  primary containment. By t h e  use 

of welded construction with a minimum of gasketed jo in t s ,  and those 

pressure-buffered, zero leakage has been a t t a ined  during a l l  periods of 

operation. No accident has ever occurred t o  t e s t  t he  secondary contain- 

ment, bu t  t e s t s  of various kinds have shown that the  spec i f ied  design c r i -  

t e r i a  have been met and routine, frequent measurements ind ica te  t h a t  t h e  

reac tor  has always operated within a sa t i s f ac to ry  secondary containment. 

Containment during 2'% operation w i l l  be t h e  same as i n  t h e  235U 
operation. 

4.1 Description 

Most of t h e  f i s s i o n  products remain i n  t h e  f u e l  salt ,  bu t  t h e  f u e l  

offgas i s  a l so  intensely radioactive,  containing noble gases and part of 

t he  noble metal f i s s i o n  products. Some f i s s i o n  products deposi t  on sur-  

faces  i n  contact with s a l t  o r  offgas, thus presenting r ad ia t ion  and con- 

tamination problems i n  maintenance and inspection. Containment i s  always 

provided f o r  these sources, t h e  nature depending on the  s i t ua t ion .  

4.1.1 Containment During Operation 

The sal t  i s  contained i n  piping and vessels  of Hastelloy-N. This 

system w a s  designed f o r  long operation a t  50 psig and 1300°F without ex- 

cessive creep and i s  therefore  capable of containing much higher pressures 

and temperatures f o r  shor t  periods of time. The f u e l  system contains only 

a f e w  f langes.  I n  t he  f u e l  c i r cu la t ing  loop there  a r e  th ree  "freeze 

flanges", with a m e t a l  r i ng  s e a l  backing up a frozen s a l t  ba r r i e r .  A s  i n  
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a l l  o ther  primary containment flanges, t he  groove under t h e  r ing  i s  pres- 

sur ized t o  100 psig with helium t o  provide a buf fer  zone and continuous 

leak  detection. There i s  a l so  an access nozzle on top of t h e  reac tor  

vesse l  with a frozen s a l t  s e a l  backed by a buffered r ing- jo in t  f lange.  

The piping and vessels  i n  the cover gas and offgas system a r e  of Hastelloy-N 

and s t a i n l e s s  steel, with severa l  flanges, a l l  leak-detected and buffered. 

This grade of containment extends through the  charcoal beds, where prac- 

t i c a l l y  everything but  10.6-y 85fi decays, t o  t h e  point where t h e  offgas 

i s  mixed i n t o  the  ven t i l a t ion  s tack  flow. This then i s  t h e  primary con- 

tainment during operation. 

* 

The sealed reac tor  and drain-tank c e l l s  a r e  the  secondary containment 

f o r  t h e  f u e l  sa l t  during operation. The l i n e s  and vessels  through which 

t h e  c e l l  atmosphere i s  rec i rcu la ted  by the  component coolant pump are i n  

e f f e c t  extensions of t he  reac tor  c e l l .  The c e l l s  a r e  held a t  -2 psig by 

venting about 70 scf /d  of t he  component coolant pump output t o  compensate 

f o r  inleakage and de l ibera te  inputs of nitrogen. The evacuation flow 

passes a rad ia t ion  monitor and an automatic block valve, then through high- 

e f f ic iency  pa r t i cu la t e  f i l t e r s  before passing up t h e  ven t i l a t ion  s t ack  

pas t  another s e t  of monitors. 

c e l l )  and the  charcoal beds a r e  ins ide  enclosures through which ven t i l a t ion  

a i r  flows d i r e c t l y  t o  the  s tack  f i l t e r s .  

when it i s  being used i s  an extension of the  offgas system, i s  i n  an en- 

c losure swept with helium t h a t  exhausts through a charcoal t r a p  t o  the  

s tack  f i l t e r s .  

are equipped with closure devices, t he  type depending on the  appl icat ion,  

as indicated i n  Fig.  4.1. Most of t he  sa fe ty  block valves a r e  actuated 

by rad ia t ion  monitors, bu t  many c lose  i f  t h e  reac tor  c e l l  pressure goes 

above atmospheric. 

The f u e l  offgas l i n e  (outs ide the  reac tor  

The f u e l  sampler-enricher, which 

A l l  se rv ice  l i nes  penetrat ing t h e  secondary containment 

* 
The 85fi concentration i n  t he  s tack  gas i s  present ly  4 x lom6 pc/cc, 

j u s t  tolerance for immersion f o r  40 hours a week. 
tuted,  t h e  y i e l d  of 85K4. w i l l  be up by a f a c t o r  of 2.8 and t h e  offgas con- 
cent ra t ion  w i l l  be higher by t h a t  f ac to r .  Atmospheric dispers ion from 
t h e  s tack  makes concentrations a t  t h e  ground qu i t e  ins igni f icant  i n  
e i t h e r  case.  

After  23% i s  subs t i -  
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Figure 4.1. Schematic of MSFE Secondary Containment Showing Typical Penetration Seals 
and Closures. 
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4.1.2 Containment During Maintenance 

Most maintenance does not e n t a i l  opening the  containment described 

When it i s  necessary t o  perform work ins ide  the  reac tor  c e l l ,  a above. 

30-inch l i n e  i s  opened, connecting the  c e l l  t o  the  ven t i l a t ion  s tack  

through t h e  high-efficiency f i l t e r s .  Then when the  opening necessary f o r  

maintenance i s  made i n  t h e  c e l l  roof, a i r  i s  drawn down i n t o  the  c e l l  

from the  work area. 

pheric pressure t o  provide another l i n e  of defense aga ins t  u n f i l t e r e d  r e -  

leases. contaminated equipment and too ls  a r e  bagged i n  p l a s t i c  or sealed 

i n  cans before being withdrawn from the  containment. 

The work area i s  maintained s l i g h t l y  below atmos- 

4.2 Experience 

4.2.1 Containment During Maintenance 

Ekperience with regard t o  containment during maintenance can be 

b r i e f l y  summarized. In  no case has personnel exposure exceeded normal 

occupational l i m i t s ,  and the  maximum re lease  of f i s s i o n  products t o  the  

environment i n  any week has been l e s s  than 0.2 curie .  

4.2.2 Primary Containment During Operation 

The primary containment of t he  f u e l  sa l t  has been per fec t .  Euffer 

pressure has been maintained on the  f reeze  flanges a t  a l l  times, ensuring 

zero leakage of sa l t .  The t ightness  of t he  system i s  indicated by buf fer  

gas leakage, which i s  l e s s  than 5 x 

zone when t h e  system i s  hot.  

cm3/sec from each f lange buf fer  

There has been no s ign i f i can t  re lease  from the  radioact ive gas sys- 

Occasionally during f u e l  sa l t  sampling, minute quan t i t i e s  (do pc) t e m .  

of f i s s i o n  products have been vented t o  the  s tack  when the  sampler en- 

c losure i s  purged, but  l a rge  re leases  of t h i s  kind are impossible because 

t h e  source i s  l imited.  

been ca l l ed  on t o  block re lease  of a c t i v i t y  on only one occasion. 

October 1966, as a r e s u l t  of excessively rapid changes i n  the  f u e l  pump 

pressure, radioact ive gases entered the  pump s h a f t  s e a l  vent l ine.13 

The rad ia t ion  block valve on the  offgas l i n e  has 

In  

The 

'%SR Program Semiann. Progr. Rept. Feb. 28, 1967, ORNL-4119, 
PP. 28-29. 
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rad ia t ion  monitor blocked the  l i n e  before the re  was a measurable (10 pc) 

re lease  t o  the  stack. 

t h i s  l i n e  even though the  need f o r  t h e  troublesome pressure changes was 

eliminated. 

Subsequently a charcoal f i l t e r  w a s  i n s t a l l e d  i n  

The primary system i s  rout inely pressure- tes ted by applying 65 ps ig  

helium pressure i n  the  pump bowl with f lu sh  sal t  c i r cu la t ing  a t  1200°F. 

Never has there  been any indicat ion of leakage. 

4.2.3 Secondary Containment During Operation 

I n  1962, soon a f t e r  t he  construction of t he  reac tor  c e l l  and dra in  

tank c e l l s  was completed, they were t e s t ed  hydros ta t ica l ly  a t  48 psig 

(measured a t  t he  tops of t he  c e l l s )  t o  assure  they would withstand the  

design pressure of 40 psig.  

1965, a f t e r  t he  vapor-condensing system was connected. A l l  individual  

se rv ice  l i n e  block valves and check valves t h a t  could become secondary 

containment i n  case of a catastrophic  f a i l u r e  i n  a c e l l  were t e s t e d  and 

proved sa t i s f ac to ry .  

membranes covering t h e  c e l l s .  

openings closed, and penetrations sealed, t h e  c e l l s  were t e s t e d  successively 

a t  20, 30, 10, and -2 psig.  A t  each pos i t ive  pressure l e v e l  a l l  pene- 

t r a t ions ,  cable sea ls ,  tube f i t t i n g s  and ex terna l  p a r t s  of valves com- 

pr i s ing  secondary containment were checked f o r  leakage. Leakage r a t e s  

were measured with the  r e s u l t s  shown i n  Fig. 4.2. 

The f i rs t  complete leak  t e s t  was made i n  

A check a t  1 psig showed no leaks i n  t h e  welded 

After t he  top blocks were in s t a l l ed ,  a l l  

The safe ty  analysis  had assumed t h a t  t h e  leakage r a t e  from t h e  c e l l s  

Corresponding leakage rates would reach 1% per day a t  39 psig and 2 6 0 ' ~ .  

a t  other  pressures would be approximately a s  indicated by t h e  curves on 

Fig. 4.2; t he  exact re la t ionship  between pressure and leakage would depend 

on the  r e l a t i v e  contribution of various types of leaks.  The secondary 

containment was judged t o  be acceptable s ince  a l l  t he  leakage r a t e s  

measured a t  pos i t ive  pressure f e l l  w e l l  below even the  s t r a i g h t  l i n e  (which 

i s  a conservative way t o  extrapolate  t o  higher pressures) .  

a t  pos i t ive  pressure a l so  showed acceptable r a t e s .  

two t e s t s  a t  10 psig gave 65 and 43 scf /d  a t  10 psig.  

test  a t  20 psig showed only 35 scf/d.  

Subsequent tests 

In  the  f a l l  of 1966, 
In  June 1967, a 

, 
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Leakage r a t e s  with the  c e l l s  a t  pos i t ive  pressure a r e  measured by 

changes i n  d i f f e r e n t i a l  pressure between t h e  c e l l  atmosphere and a ref- 

erence volume within the  c e l l .  During operation, when t h e  reac tor  c e l l  

i s  held a t  -2 psig, the  inleakage r a t e  i s  determined by a balance on 

measured inputs and exhaust r a t e  with correct ions f o r  s m a l l  changes i n  

pressure. Although la rge  changes i n  inleakage a r e  de tec tab le  almost im- 

mediately, an accurate determination a t  t h e  normal r a t e  takes about a 

week of data  under f a i r l y  steady conditions.  

When t h e  c e l l  i s  a t  negative pressure, gas en ters  through sump bub- 

blers and by leakage from pressurized service l i n e s  and penetrations,  bu t  

t he  important component i s  the  c e l l  inleakage through routes  t h a t  repre-  

sent  possible  outleakage paths a t  pos i t ive  pressure.  This inleakage has 

been l e s s  than 50 scf /d  during a l l  periods of operation. On th ree  oc- 

casions other  inputs  have caused anomalously high measurements, but  on 

inves t iga t ion  t h e  ac tua l  c e l l  inleakage was found t o  be acceptably low. 
In May 1966, t he  reac tor  was shut down when the  apparent inleakage in-  

creased above 100 scf /d  and it was found t h a t  nitrogen was leaking i n t o  

t h e  c e l l  from the  pressurized thermocouple penetrat ion sleeves.  

cannot leak  out by t h i s  route  so  a f l o m e t e r  was i n s t a l l e d  and t h i s  input 

was factored i n t o  the  balance. 

high inleakage was found t o  be leaks i n  t h e  c e l l  from pneumatic valve 

operator l i n e s .  Flowmeters were i n s t a l l e d  t o  measure t h i s  inflow and the  

ac tua l  inleakage was again found t o  be low. 

however, t he  a i r  l i n e  leaks increased u n t i l  the  e r r o r  i n  measurement be- 

came so l a rge  that the  ac tua l  c e l l  leakage could not be determined with 

sa t i s f ac to ry  accuracy. 

the  a i r  l i n e  disconnects i n  the  reac tor  c e l l  were a i l  replaced, stopping 

Gas 

I n  November 1966, another indicat ion of 

Over the  next two months, 

In January 1967, t h e  reac tor  was shut down and 

the  leaks.  

rad ia t ion  damage and were replaced by metal-to-metal s ea l s . )  

t he  c e l l  l eak  r a t e  measarements have always been acceptable, usual ly  

below 25 scf/d. 

(The elastomer sea ls  i n  t he  o r ig ina l  disconnects had suffered 

Since then 



5. SITE 

The MSRE i s  s i tua t ed  i n  Melton Valley, about a m i l e  across  a r idge  

from the  main X-10 Area of Oak Ridge National Laboratory. 

descr ip t ion  of the s i t e ,  including surrounding population densit ies and 

geophysical features ,  is given i n  Chapter 4 of the  o r i g i n a l  MSRE Safety 

Analysis Report. 

p l an t  areas; otherwise t h e  o r ig ina l  descr ipt ion is  s t i l l  va l id .  

A de t a i l ed  

There have been minor changes i n  population within the 

6. OPERATION 

Operation of t h e  MSRE has a t t a ined  most of t h e  object ives  of t he  ex- 

periment. 

systems have been met, and overcome, bu t  experience has shown no de- 

f ic iency  with regard t o  sa fe ty ,  

Mechanical problems i n  the  operation of some components and 

6.1 S ta f f  and Procedures 

The MSRE i s  operated rout ine ly  by four  crews on ro t a t ing  s h i f t s ,  

each crew consis t ing of a minimum of one supervisor and two operators.  

Supervisors and operators are t ra ined,  examined and formally cer t i f ied 

before  being assigned to a c r e w .  During periods involving experiments, 

sampling o r  other  such operations, the  crews are augmented by addi t iona l  

t r a ined  members of t h e  MSRE staff. Analysis and maintenance support i s  

as described i n  t h e  o r i g i n a l  s a fe ty  ana lys i s  repor t .  

There has been very l i t t l e  turnover of personnel. O f  the persons 

present ly  on t h e  operating crews, only two operators were not part of 

the  MSRE s t a f f  from the beginning of nuclear operation. 

and Operations Report .14 

Operating procedures a r e  contained i n  Par t  V I 1 1  of t h e  MSRE Design 

Loose-leaf versions, formally updated, a r e  used 

Y 
14R.  H. Guymon, MSRE Design and Operations Report, Part V I 1  - 

Operating fiocedures, ORNL-TM-908, Vol. 1 and 2 (December, 1965). 



by the  operating crews. 

Par t  I X  of t he  Design and Operations Report." 

f o r t h  the  sa fe ty  limits on t h e  operation. 

Safety procedures and emergency plans cons t i t u t e  

Pa r t  V I  (Ref. 16) s e t s  

Any modification of t he  system or any change i n  t h e  operating pro- 

cedures must f i r s t  be appropriately reviewed and formally a p p r 0 ~ e d . l ~  

6.2 Chronological Account 

The operation of t h e  MSRE has consisted of t h e  following phases: 

p r e - c r i t i c a l  t es t ing ,  i n i t i a l  c r i t i c a l  measurements, low-power measure- 

ments, and reac tor  capabi l i ty  inves t iga t ions  .I8 The l a s t  phase covers 

both the  approach t o  f u l l  power and sustained operation a t  high power. 

Figure 6.1 out l ines  the  a c t i v i t i e s  f o r  t h e  18 months beginning with 

t h e  a r r i v a l  of t h e  operating s t a f f  a t  t he  reac tor  s i t e  i n  Ju ly  1964. 
Subsequent operation i s  out l ined i n  Figures 6.2 and 6.3. 

P r e c r i t i c a l  t e s t i n g  served both  t o  check out t h e  equipment and t r a i n  

t h e  operators.  

molten s t a t e  and few d i f f i c u l t i e s  were encountered i n  t h e  in tegra ted  

operation of t he  system with these  salts. It w a s  found, however, that t h e  

r ad ia to r  doors would not operate properly a f t e r  being heated, which would 

requi re  modifications before power operation. 

ginning nuclear operation was loading, c i rcu la t ing ,  and sampling t h e  f u e l  

c a r r i e r  sa l t  containing 150 kg of depleted uranium. 

The reac tor  w a s  f i rs t  made c r i t i c a l  on June 1, 1965. 

Coolant and f l u s h  s a l t s  were successful ly  loaded i n  t h e  

The f i n a l  t es t  before be- 

Highly enriched 

235 was added as  the  LiF-UF4 eutect ic ,  with four  batches t o t a l l i n g  

69-kg 23% added through t h e  dra in  tanks and 0.6 kg added i n  s m a l l  capsules 

1 5 A .  N .  Smith, MSRE Design and Operations Report, Par t  I X  - Safety 
Procedures and Energency Plans, Om-TM-909 (June 1965). 

16S. E.  Beall  and R.  H. Guymon, MSRE Design and Operations Report, 
Par t  V I  - Operating Safety L i m i t s  f o r  t h e  MSRE, ORNL-TM-733 Rev. 2, 
(September 1966) . 

17R. H. Guymon, Op.cit., Sections l3B and l 3 C .  

18R.  H. Guymon, P. N. Haubenreich, and J. R. Engel, MSRE Design and 
Operations Report, Par t  X I  - Test Program, Om-TM-911 (November 1966). 
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through the  sampler-enricher t o  reach c r i t i c a l i t y .  

added i n  85-g capsules while measurements were made of con t ro l  rod worth 

and various r e a c t i v i t y  coe f f i c i en t s .  

Another 6.6 kg was 

After  t he  zero-power physics experiments, t h e  f u e l  w a s  drained and 

s tored while f i n a l  preparations were completed f o r  operation a t  power. 

The service l i f e  of t h e  reac tor  was reevaluated and some s teps  were taken 

t o  prolong t h e  l i f e .  

t he  reac tor  c e l l  w a l l  were modified t o  reduce thermal stresses and increase 

t h e  permissible number of thermal cycles .  

were adjusted t o  minimize s t resses ,  and strain-gage analyses were made of 

questionable points.  

-- i n  s i t u  t o  improve the  physical propert ies .  

f luxes  and the  r e s u l t s  of experinental  measurements on the  e f f ec t s  of 

i r r a d i a t i o n  on Hastelloy-N were combined t o  e s t ab l i sh  an expected service-  

ab le  l i f e  for t he  reac tor  vessel .  Before t h i s  shutdown, t h e  f u e l  pump 

had c i rcu la ted  s a l t  for more than 2000 hours. 

moved for inspection and t o  provide a f i n a l  t e s t  of an important remote 

maintenance operation. It was r e i n s t a l l e d  when it was found t o  be i n  

excel lent  condition. The or ig ina l ,  heat-warped r ad ia to r  doors were re- 

placed and t h e  door guidance mechanisms w e r e  modified and adjusted t o  

provide r e l i ab le ,  f r e e  operation, hot or cold.  On the  r ad ia to r  enclosure, 

a i r  leakage paths were reduced, thermal insu la t ion  was improved, wires 

were relocated, and c e l l  ven t i l a t ion  was modified t o  e l iminate  overheating 

of t h e  surroundings. 

The penetrat ions of t h e  coolant sa l t  l i n e s  through 

Piping and vesse l  supports 

The reac tor  vesse l  c losure weld w a s  hea t - t ra ted  

Data on stresses, neutron 

The ro t a ry  element was r e -  

Late i n  the  prepower shutdown, t h e  reac tor  secondary containment was 

sealed, t h e  vapor-condensing system was connected and the  combined volumes 

were leak-tested.  Leaks, which were confined t o  serv ice  penetrat ions of 

t he  reac tor  and dra in  tank ce l l s ,  were repaired, a f t e r  which tests over a 

range of pressure showed t h e  leakage was wel l  within acceptable limits. 

(See Chapter 4.) Meanwhile, analysis  of t h e  zero-power experiments was  

completed, furnishing values for t he  cha rac t e r i s t i c  coe f f i c i en t s  needed 

t o  monitor and i n t e r p r e t  subsequent operation. 

Nuclear operation resumed i n  December 1965 with low-power tests. A 
u month l a t e r  t he  esca la t ion  of the  power was s ta r ted ,  only t o  be in te r rupted  
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a t  1 M w  when small valves and f i l t e r s  i n  t he  f u e l  offgas system plugged. 

Invest igat ion disclosed a few grams of heat-  and radiat ion-affected or- 

ganic matter, presumably from o i l  t h a t  had leaked i n  through the  f u e l  pump 

ro ta ry  element. A seal-welded u n i t  was readied, bu t  w a s  not i n s t a l l e d  

when l a r g e r  valves and a new type of f i l t e r  reduced the  problem t o  a 

manageable nuisance. After t h i s  delay, power escalat ion w a s  resumed and 

i n  May reached the  capabi l i ty  of t he  heat  removal system - about 7.5 Mw. 

The f i r s t  weeks of power operation were in te r rupted  b r i e f l y  t o  r epa i r  

an e l e c t r i c a l  f a i l u r e  i n  the  f u e l  sampler and t o  inves t iga te  apparently 

high leakage i n t o  t h e  reac tor  c e l l .  

operation, one of t h e  a i r  blowers used t o  remove heat  from the  coolant 

sa l t  broke up from mechanical s t r e s s .  

blower and t h e  spare  ( a l l  l e f t  over from the  Ai rc ra f t  Reactor Test), 

necess i ta t ing  procurement of th ree  new un i t s .  

f o r  t h e  blower replacement, t h e  a r r ay  of graphi te  and metal specimens i n  

t h e  core was removed and new specimens were in s t a l l ed .  

assembly i n  the  f u e l  offgas l i n e  was a l so  replaced s o  t h e  f i rs t  assembly 

could be examined t o  fu r the r  i den t i fy  the  mater ia l  t h a t  had caused plugging 

before t h e  f i l t e r  was i n s t a l l ed .  A complete t e s t  of the  secondary contain- 

ment was a l s o  completed during t h i s  shutdown. 

Then i n  July, a f t e r  7800 Mwh of power 

Cracks were found i n  t h e  other  

While t h e  reac tor  was down 

The spec ia l  f i l t e r  

Power operation was resumed i n  October with one blower, then i n  

November the  second blower was  i n s t a l l e d  and the  reac tor  was taken t o  

fill power. 

got ten i n t o  a gas l i n e  a t  t he  f u e l  pump during the  Ju ly  shutdown, t h e  re- 

ac to r  was operated f o r  30 days without in te r rupt ion  a t  f u l l  power i n  

December and January. 

t o  i n s t a l l  an improved offgas f i l t e r  and t o  replace leaking a i r - l i n e  d i s -  

connects i n  t h e  reac tor  c e l l .  Full-power operation was resumed l a t e  i n  

January and continued i n t o  May f o r  103 days of nuclear operation. 

t h i s  time numerous samples were taken t o  e luc ida te  f i s s i o n  product be- 

havior, long-term e f f e c t s  on r e a c t i v i t y  were studied, and enriching cap- 

su les  were added f o r  t h e  f i rs t  time with the  reac tor  a t  power. The re- 

ac to r  was f i n a l l y  shut down f o r  t h e  scheduled removal of specimens from 

the  core.  

After  a shutdown t o  remove f lu sh  s a l t  t h a t  had acc identa l ly  

This run was terminated t o  inspect  t he  new blowers, 

During 
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During the  May-June shutdown the  core sample a r r ay  was r e i n s t a l l e d  

with some new specimens, minor maintenance and inspect ion were car r ied  

out, and t h e  complete annual t e s t s  of controls  and containment were 

completed. 

After 7 weeks of full-power operation, t h e  reac tor  had t o  be shut 

down t o  r epa i r  t he  f u e l  sampler mechanism and t o  r e t r i e v e  a l a t c h  from 

t h e  sampler tube a t  t he  pump bowl. 

September 1 5  and continued through the  end of 1967 with only b r i e f  i n t e r -  

ruptions.  

Power operation was resumed on 

6.3 Evaluation of Experience 

From t h e  standpoint of reac tor  safety,  experience with t h e  MSRE has 

been most grat i fying.  

pectations t h a t  it would be qu i t e  s tab le .  

chemical analyses t h a t  gives cause t o  expect i n s t a b i l i t y  i n  t h e  fu ture .  

Ver j  c lose  monitoring of t he  r e a c t i v i t y  has shown t h a t  a l l  changes i n  

normal operation a r e  described by the  ana ly t i ca l  model t o  within 

? 0.05% 6k/k, ind ica t ing  excel lent  precis ion of measurements and compu- 

t a t ions  and no anomalous physical behavior i n  the  system. 

t h i s  difference has been exceeded w a s  during experiments when unusual 

amounts of gas were entrained i n  t h e  fue l ,  causing the  xenon poisoning t o  

deviate  from the  model by about 0.2% 6k/k.) 

of t h e  system agree very c lose ly  with predict ions.  

nuclear dynamics a r e  such t h a t  the  system i s  s t a b l e  a t  a l l  power l eve l s  

and qu i t e  easy t o  control .  

and changing power l e v e l  a r e  s inp le  and well-governed by cont ro l  i n t e r -  

locks.  

10,000 h of nuclear operation, t he re  has never been a cont ro l  rod scram 

because any process var iab le  went out of l i m i t s .  Corrosion has been 

p rac t i ca l ly  n i l  and, as ide  from to l e rab le  changes i n  t h e  physical propert ies  

of t h e  reactor-vessel material, there  has been no de ter iora t ion  of reac tor  

mater ia l s .  

Some delays were encountered i n  ear ly  operation because of t h e  offgas sys- 

tem and the  main blower f a i lu re ,  but  these d id  not prevent t h e  accomplish- 

ment of the  planned experimental prograE or require  any undesirable 

The chemistry of t h e  f u e l  s a l t  has borne out  ex- 

Nor i s  there  any t rend i n  t h e  

(The only times 

The neutronic cha rac t e r i s t i c s  

The hea t  removal and 

The operations of f i l l i n g ,  going c r i t i c a l ,  

An indica t ion  of  t h e  d o c i l i t y  of t he  system i s  t h a t  i n  over 

Dependability of r?ajor components has general ly  been good. 
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compromises i n  t h e  operation. The safe ty  system i s  r e l i a b l e ;  no sa fe ty  

c i r c u i t  or component has ever f a i l e d  so a s  t o  decrease the  intended pro- 

tec t ion .  

vat ions about operating with 23%J. 

Thus the re  i s  nothing i n  the  experience t o  date  t o  cause r e se r -  

7. HANDLING AND LOADING 23% 

After  t h e  p a r t i a l l y  enriched uranium now i n  the  f u e l  sa l t  i s  s t r ipped  

by f luo r ina t ion  i n  t h e  MSRE storage tank, 235 w i l l  be added t o  t h e  r e -  

maining c a r r i e r  s a l t  as t h e  eu tec t ic  LiF-UF4 (73 - 27 mole %). 
precautions w i l l  be taken t o  prevent acc identa l  c r i t i c a l i t y  i n  handling 

and s to r ing  t h e  eu tec t ic ;  techniques proven i n  maintenance of t he  MSRE 
w i l l  be used t o  cope w i t h  t he  problems of r ad ia t ion  and contamination 

which prohib i t  d i r e c t  handling of t he  mater ia l .  

Adequate 

7.1 Production 

The enriching s a l t  w i l l  be prepared i n  t h e  Thorium-Uranium Recycle 

F a c i l i t y  (TURF) by hydrofluorination of uranium oxide i n  t h e  presence of 

molten l i thium f luor ide .  The process must be ca r r i ed  out remotely i n  a 

shielded c e l l  because of t he  intense a c t i v i t y  of t he  daughters of 232U I 

which cons t i t u t e s  220 ppm of t he  uranium. 

the 23% feed material  i s  given i n  Table 7.1.) 
t ransfer red  from the  process vesse l  t o  s m a l l  containers for t ranspor t  t o  

t h e  MSRE. 
cans ranging i n  s i z e  from 0.5 t o  7 kg 233J each. 

l i k e  those used previously f o r  235U addi t ions through t h e  sampler-enricher, 

will be f i l l e d  with eu tec t i c  s a l t  containing a t o t a l  of 4.0 kg 23%. 

(The i so topic  composition of 

The molten sal t  w i l l  be 

A t o t a l  of 35 kg of 235 w i l l  be loaded i n t o  nine 2-1/2inch-OD 

Forty-five capsules, 



Table 7.1 

Isotopic  Composition of 233J Feed Mater ia l  

U Isotope 

232 
233 
234 
235 
236 
238 

Abundance 
(atom %) 

0.022 

91 49 
7.6 
0.7 
0.05 
0.14 

7.2 Major Additions Through a Drain Tank 

While t h e  uranium i s  being s t r ipped from t h e  f u e l  and t h e  f u e l  drain 

tanks a r e  empty, equipment f o r  adding cans of s a l t  w i l l  be a t tached t o  the  

access f lange of one dra in  tank. This equipment i s  shown i n  Fig. 7.1. 
The procedure f o r  making t h e  addi t ions i s  as follows. 

w i l l  be divided between t h e  two dra in  tanks, bringing t h e  l eve l s  somewhat 

below t h e  tank center l ines .  

will be lowered s l i g h t l y  below t h e  pressure i n  t h e  containment enclosure 

at tached t o  the  access nozzle. One can of s a l t  w i l l  be brought from t h e  

nearby TLJR.F bui lding t o  the  MSRE i n  a shielded, bagged c a r r i e r .  

c a r r i e r  it w i l l  be lowered through a temporary opening i n t o  a s torage 

w e l l  i n  t h e  containment enclosure. After t he  enclosure i s  sealed and 

purged t o  reduce moisture and oxygen, t he  i s o l a t i o n  valve will be opened 

and the  sal t  can w i l l  be taken from the  turn tab le  and lowered i n t o  the  

upper p a r t  of t he  dra in  tank, above the  s a l t  surface.  

main suspended i n  the  tank u n t i l  t he  s a l t  has melted and drained. After  

a weight measurexent has ve r i f i ed  t h a t  t h e  can i s  empty, it w i l l  be placed 

i n  a s torage wel l  i n  the  turn tab le  and the i s o l a t i o n  valve w i l l  be closed 

u n t i l  t he  next addi t ion.  

c r i t i c a l i t y  and no more than one loaded can w i l l  be i n  the  enclosure a t  

any time. 

The c a r r i e r  sa l t  

The pressure of helium i n  t h e  f u e l  system 

From t h e  

The can w i l l  r e -  

The charging cans a r e  individual ly  sa fe  from 
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-TURF CARRIER 

GRAPHITE SAMPLING 

PURGE GAS 

FFlClENCY FILTER 

EXHAUST BLOWER 

FST ACCESS FLANGE 

Figure 7.1. Arrangement for Adding 233U Enriching S a l t  t o  Fuel . 
Drain Tank.  



After each can of enriching s a l t  i s  added, t h e  s a l t  i n  t h e  other  

dra in  tank w i l l  be t ransfer red  back t o  d i s t r i b u t e  the  uranium throughout 

a l l  t he  sa l t .  Experience i n  the  "%I c r i t i c a l  experiment indicated t h a t  

such t r ans fe r s  provide excel lent  mixing of the  sal t .  If more uranium i s  

then t o  be added, half  of t h e  mixture w i l l  again be t ransfer red  t o  t h e  

second dra in  tank. 

no fu r the r  t r ans fe r s  w i l l  be made. Although not shown i n  Fig. 7.1, two 

neutron-sensit ive chambers w i l l  be suspended i n  t h e  dra in  tank c e l l  and 

the  count r a t e s  w i l l  be analyzed t o  monitor t h e  s u b c r i t i c a l  mul t ip l ica t ion  

i n  t h e  tank. 

However, i f  the  next s t e p  i s  f i l l i n g  of t h e  f u e l  loop, 

The approach t o  the  c r i t i c a l  loading of t h e  reac tor  w i l l  be t h e  same 

as i n  the  23%J s t a r t ~ p . ' ~ , ~ ~  

1200'F i s  34.6 kg 23%. 

dra in  tank and the  s a l t  mixed, t he  core w i l l  be f i l l e d  and neutron count- 

r a t e s  determined. 

added. 

extrapolat ion of inverse count r a t e s .  

br ing the  23?J content t o  about 0.5 kg below the  projected minimum c r i t i c a l  

loading. 

tainment enclosure, and the  standpipe assembly w i l l  be removed and the  

blank w i l l  be i n s t a l l e d  on t h e  access nozzle. The dra in  tank c e l l  w i l l  

then be sealed and the  sh ie ld  blocks w i l l  be i n s t a l l e d  before the  reac tor  

i s  made c r i t i c a l .  

The predicted minimum c r i t i c a l  loading a t  

After t h ree  7-kg cans have been added t o  the  

This w i l l  be repeated after another 7-kg can has been 

The s i z e  of two subsequent addi t ions w i l l  be determined by the  

The l a s t  major addi t ion  should 

A t  t h i s  point the turn tab le  with a l l  t he  empty cans, t he  con- 

7.3 Small Additions Through the  Sampler-Enricher 

A s  i n  t he  o r ig ina l  experiment with 235U, t he  f i n a l  approach t o  c r i t i -  

c a l i t y  w i l l  be made by adding capsules through t h e  sampler-enricher with 

t h e  f u e l  c i rcu la t ing .  Some changes w i l l  be necessary i n  handling the  

l%SR Program Semiann. Progr. Rept. Aug. 

20E. E .  Prince e t  a l ,  Zero-Power Physics 
ORNL-4233 (Fekmary 1968). 

31, 196.5, Om-3872, PP- 8-9. 

Experiments on the  MSRE, 
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capsules on t h e i r  way t o  the  sampler-enricher because of the  neutrons and 

gamma rad ia t ion  from the  enriching s a l t .  Latch keys and cables w i l l  have 

been at tached before  the  capsules a r e  f i l l e d  and t h e  f i l l e d  capsules w i l l  

be d r i l l e d  t o  expose the  frozen eu tec t ic  before they leave t h e  TURF c e l l .  

Six capsules a t  a time, each containing about 88 g 23% w i l l  be moved t o  

t h e  MSRE i n  a shielded, bagged c a r r i e r .  

removed from t h e  c a r r i e r  and lowered d i r e c t l y  i n t o  the  sampler-enricher 

enclosure. 

r e l a t i v e l y  small amount of s a l t  i n  a s ing le  capsule. 

One capsule a t  a time w i l l  be 

This t r a n s f e r  can be made without shielding because of t h e  

8. SAFETY OF ROUTINE OPERATIONS 

Operation of t h e  MSRE involves handling subs t an t i a l  amounts of radio-  

a c t i v i t y  i n  f'uel sampling, offgas sampling, removal of core specimens, and 

maintenance of radioact ive systems. 

r ad ia t ion  exposure or a c t i v i t y  re lease  t h a t  could a f f e c t  t he  personnel 

operating t h e  reac tor  and delay the  experimental program. Therefore, each 

of these  operations follows caref'ul, formally approved procedures, and 

uses equipment designed t o  provide adequate protect ion.  

t he  hazards of misoperation or improper functioning of equipment a r e  l o c a l  

i n  nature and a r e  no d i f fe ren t  with "3J f u e l  than they have been i n  

operations t o  date.  The next two chapters consider conceivable incidents  

that threaten ser ious damage t o  the  reac tor  or a c t i v i t y  re leases  hazardous 

t o  t h e  public.  

I n  these there  i s  t h e  po ten t i a l  f o r  

But  a t  any r a t e  
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9. BREACH OF PRIMARY CONTAIIWEDT 

A gross f a i l u r e  or breach of t he  primary containment of t h e  f u e l  sa l t  

would have a ser ious impact on the  program even though personnel would be 

protected by the  secondary containment. 

rence has therefore  been reconsidered, taking i n t o  account t h e  d i f f e r e n t  

cha rac t e r i s t i c s  of t he  reac tor  with 23% fuel, t he  changes i n  s a fe ty  c i r -  

c u i t r y  s ince  the  o r i g i n a l  s a fe ty  analysis ,  and the  condition of t h e  sal t  

containment a f t e r  more than two years of operation. 

The p o s s i b i l i t y  of such an occur- 

9.1 Damaging Nuclear Incidents 

The most s ign i f i can t  e f f e c t  of changing from 23% t o  235 fuel i s  t h e  

change i n  t h e  nuclear cha rac t e r i s t i c s  of t h e  system, pa r t i cu la r ly  t h e  dy- 

namics. It was necessary, therefore,  t o  reexamine c a r e f i l l y  the  response 

of t he  reac tor  t o  incidents  that could cause nuclear excursions. The 

o r i g i n a l  s a fe ty  ana lys i s  considered i n  some d e t a i l  t he  complete spectrum 

of nuclear incidents  t h a t  could be postulated.  A s  expected, some kinds 

of incidents  proved t r i v i a l  i n  t h e  MSRE because of t h e  nature  of t h e  re- 

ac to r .  

inconsequential cases and focusses primarily on those incidents  t h a t  could 

conceivably have s ign i f i can t  po ten t i a l  for damage. 

The safe ty  analysis  f o r  23% therefore  only b r i e f l y  touches on these  

9.1.1 General Considerations 

The bas ic  neutronic cha rac t e r i s t i c s  t h a t  determine t h e  dynamic be- 

havior of t h e  system a r e  presented i n  Table 9.1 fo r  both the  projected 

233J loading and the  current  loading with p a r t i a l l y  enriched 23?J. 

t he  23% loading both t h e  predicted and the  observed values a r e  l i s t e d  

f o r  purposes of comparison. 

l a t e d  by the  same procedures as  t he  235U predictions,  and the  probable 

e r ro r s  a r e  about the  same. 

For 

The cha rac t e r i s t i c s  f o r  233J fuel were calcu- 

The smaller f r a c t i o n  of delayed neutrons from t h e  23% f u e l  may sug- 

ges t  a decrease i n  the  inherent r e l a t i v e  s t a b i l i t y  of t he  system. 

s t a b i l i t y  i s  a function of many system parameters. 

E?at 

A de t a i l ed  analysis21 

J. B a l l  and T. W. Kerlin, S t a b i l i t y  Analysis of t he  MSRE, 
om-m-1070 (December 1965). 



Table 9.1 

Neutronic Charac te r i s t ics  of MSRE with 23?J and 23?J Fuel S a l t  a t  1200’F 

Minimum C r i t i c a l  Uranium Loading” 

Concentration (g  U / l i t e r  s a l t )  

Tota l  Uranium Inventcry ( k g )  d 

Control Rod Worth a t  Minimum C r i t i c a l  Loading ($ 6k/k) 

One Rod 

Three Rods 

Prompt Neutron Generation Time (sec)  

React ivi ty  Coeff ic ients  f 

Fuel S a l t  Temperature ( 
Graphite Temperature [ ( ] 

Tota l  Temperature [(OF)-’] 

Fuel S a l t  Density 

Graphite Density 

Uranium concentrationg 

Effec t ive  Delayed Neutron Fractions 

Fuel Stat ionary 

Fuel Ci rcu la t ing  

React ivi ty  Change Due t o  Fuel Circulat ion ($ 6k/k) 

2 3 ~  f i e 1  

15.82 

32.8 

-2.75 

-7.01 
4.0 x 10-4 

-6.13 x 
-3.23 x lo-’ 
-9.36 x IO-’ 

3.. 41r7 
+. 444 
+.389 

2.64 x 
1.71 x 

-0.093 

b 33.06 132.85 * 0.251‘ 
207 5e 

-2.11 ~2.26 * 0.071 
-5.46 C5.59 * 0.071 

2.4 x 10-4 

-4.1 x [(-4.9 t 2.3) x 
-4.0 x lo-’ 

-8.1 x 10-~ r-7.3 x lo-’] 

0.182 

0.767 
0.234 C0.223 J 

6.66 x 10’~ 
4.44 x 

-0.222 r-0.212 f 0.0041 

‘Fuel not  c i rcu la t ing ,  cont ro l  rods withdrawn t o  upper l i m i t s .  
b 

‘Values i n  brackets  a r e  measured r e s u l t s .  

%sed on 73.2 f t3  of f u e i  sa l t  a t  1200°F, i n  c i r c u l a t i n g  system and d r a i n  tanks. 
e 

f A t  i n i t i a l  c r i t i c a l  concentration. 

gHighly enriched i n  t h e  f i ss ionable  isotope (91.5% 23% o r  93$ 235). 

235V only. 

The others  a r e  predicted. 

%sed on a f inal  enrichment of 33$ 2 3 5 ~ .  

6k/k6x; otherwise, coef f ic ien ts  are o f  t h e  form x6k/k6x. 
Where u n i t s  a r e  shown, coef f ic ien ts  f o r  var iab le  x are of t h e  form 

I 
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predicted and subsequent experiments22 confirmed t h a t  i n  t h e  MSRE among 

the  most important parameters a r e  the  prompt and delayed temperature feed- 

backs. 

with 23% f u e l  give the  system a l a rge r  s t a b i l i t y  margin, pa r t i cu la r ly  a t  

low powers. Figure 9.1 shows experimental r e s u l t s  with 235U f’uel, namely 

observed responses t o  small s t e p  changes i n  r e a c t i v i t y  a t  d i f f e r e n t  i n i t i a l  
power leve ls .  The importance of temperature e f f e c t s  i s  evident i n  t h e  

l i g h t e r  damping a t  low powers. 

fuel,23 using the  techniques proved i n  the  235U operation. 

t h a t  r e l a t i v e  t o  the  behavior i n  Fig. 9.1, t h e  damping w i l l  be much 

grea te r  a t  t h e  low powers because of t h e  l a rge r  temperature coe f f i c i en t s  

of r e a c t i v i t y  f o r  23% f u e l .  

appear primarily as shor te r  na tura l  periods of o sc i l l a t ion .  

conclusion from these  r e s u l t s  i s  t h a t  t he  small per turbat ions and reac- 

t i v i t y  f luc tua t ions  t h a t  occur i n  any reac tor  will not lead  t o  divergent 

nuclear behavior t h a t  could damage the  MSRE. Thus i f  the re  i s  any severe 

nuclear t ransient ,  it w i l l  have t o  be caused by an independent, l a rge  and 

pe r s i s t en t  r e a c t i v i t y  perturbation. 

Consequently t h e  l a rge r  temperature coef f ic ien ts  of r e a c t i v i t y  

Calculations have been made f o r  23%J 
These ind ica t e  

The higher gain of t h e  neutron k ine t i c s  w i l l  

The important 

For an incident  i n  which r e a c t i v i t y  i s  added continuously (such a s  

uncontrolled rod withdrawal), t he  sever i ty  of t h e  power t r ans i en t  i s  

g rea t e r  a t  lower i n i t i a l  power l eve l s .  A lower i n i t i a l  power allows the  

in se r t ion  of more r eac t iv i ty ,  and hence the  establishment of a shor te r  

pos i t ive  period, before the  power l e v e l  ge t s  high enough f o r  power feed- 

back shutdown mechanisms (e.g. f u e l  temperature coe f f i c i en t  of r e a c t i v i t y )  

t o  become ef fec t ive .  

meter i n  defining t h i s  type of incident .  

of neutrons a r e  those i n  the  f u e l  sa l t .  

t h e  f u e l  s a l t  w i l l  contain only a small f r a c t i o n  of t he  f i s s i o n  products 

from p r io r  nuclear operation and the  photoneutron source w i l l  be completely 

Thus, t he  source power l e v e l  i s  an important para- 

I n  the  MSRE t h e  p r inc ipa l  sources 

A t  t he  time of t he  233J s ta r tup ,  

2%. W. Kerlin and S. J. Ball, Experimental Dynamic Analysis of t he  
MSRE, ORNL-TM-1647 (October 1966) 

‘?biSR Program Semiann. Progr. Rept. Aug. 31, 1967, Om-4191, p 61. 
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overshadowed by the  very intense a-n source i n  the  2-''?J fue l .  

source, alone, i n  t h e  '?% mixture w i l l  be a f a c t o r  of 700 s t ronger  than 

the  minimum source (a l so  a-n) t h a t  was ava i lab le  i n  the  235U loading. 

Thus, while t he  lowest power a t  which the  reac tor  could pass through 

c r i t i c a l i t y  was about 2 m i l l i w a t t s  with ''3 f'uel, t h e  corresponding value 

f o r  t he  23% f u e l  w i l l  be more than a w a t t .  

The a-n 

Aside from the  basic  propert ies  of t h e  reactor ,  t he  ac t ion  of t he  

reac tor  safety system i s  important i n  l imi t ing  t h e  sever i ty  of t he  various 

incidents  t o  be considered. 

reac tor  parameters: 

pump i s  running or 11.25 Jm i f  t he  pump i s  o f f ) ,  pos i t ive  reac tor  period 

less than 1 sec, and reac tor  o u t l e t  temperature grea te r  than 1300°F. 

The eff icacy of a control-rod scram depends on the  spec i f ic  behavior of 

t he  rods. 
2 of t he  3 cont ro l  rods ac tua l ly  drop on request, (2)  a delay of 100 msec 

occurs between the  scram s igna l  and the  s ta r t  of rod motion, and (3) t h e  

control-rod accelerat ion i s  10 f t / s ec2 .  A l l  of these assumptions a r e  con- 

servat ive s ince no cont ro l  rod has ever f a i l e d  t o  drop, the  clutch-release 

time i s  about 20 msec, and the  ac tua l  rod accelerat ion i s  about 1.3 ft /sec2. 

Control-rod scrams are actuated by three  

high neutron f l u x  l e v e l  (over 11.25 Mw i f  the  f u e l  

In  analyzing the  various incidents,  we assume t h a t  (1) only 

Nuclear excursions severe enough t o  threaten damage produce responses 

from t he  reac tor  systerr. t h a t  a r e  sirrilar i n  important respects,  almost 

regardless  of the  cause of the  r e a c t i v i t y  excursion. 

a c t i v i t y  must increase rapidly u n t i l  the  reac tor  i s  wel l  supe rc r i t i ca l .  

There i s  then a b r i e f  excursion t c  high power which causes a rap id  in -  

crease i n  the  tenperature of t he  f u e l  sa l t  a t  a r a t e  l oca l ly  proportional 

t o  the  f i s s i o n  d is t r ibu t ion .  

as the  heated sa l t  expands. I n e r t i a l  e f f ec t s  of acce lera t ion  of f l u i d  i n  

the  o u t l e t  pipe, momentary increase i n  f r i c t i o n  losses  i n  the  pipe and 

compression of t he  gas i n  t h e  pump bowl a r e  t h e  components of t h e  pressure 

surge, with i n e r t i a l  e f f ec t s  predoninating during very rapid heating. The 

power excursion i s  b r i e f  because of negative r e a c t i v i t y  feedback from t h e  

r i s i n g  temperature and the  e f f ec t s  of t he  cont ro l  rods being dropped by 

the  safe ty  systerr. The ten- ina<ion of  t h e  power excursion leaves ho t t e r  

s a l t  i n  t he  core, which noves on up through the  channels, giving up heat  

t o  t he  graphite, and then nixes with s a l t  frori other  channels i n  the  upper 

head. 

Typically, t h e  r e -  

A t  the  same time there  i s  a pressure surge 
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I n  t h e  o r i g i n a l  s a fe ty  analysis ,  somewhat a r b i t r a r y  l i m i t s  of 50-psi 

pressure increase or  1 8 0 0 ~ ~  maximum f u e l  temperature were used t o  def ine 

accidents  t h a t  would not be expected t o  cause damage. 

e f f e c t s  of neutron i r r a d i a t i o n  on t h e  mechanical propert ies  of t h e  vesse l  

material, damage mechanisms and thresholds have been reconsidered i n  more 

d e t a i l .  

In  l i g h t  of t he  

Damage could conceivably r e s u l t  from e i t h e r  of two mechanisms: 

s t r e s s e s  caused by the  pressure surge o r  thermal stresses caused by t h e  

rap id  change i n  t h e  temperature of salt  i n  contact with surfaces .  Con- 

s ide ra t ion  of t h e  d e t a i l s  of mechanical design and the  system response i n  

an excursion lead  t o  t h e  conclusion t h p t  thermal s t r e s s e s  i n  t h e  top head 

of t h e  r eac to r  vesse l  near t he  o u t l e t  pipe a r e  cont ro l l ing .  The cont ro l  

rod thimbles a r e  exposed t o  grea te r  temperature changes, bu t  they a r e  

r e l a t i v e l y  t h i n  and t r ans i en t  thermal s t r e s s e s  a r e  lower there  than i n  

t h e  top  head. I n  an excursion, t he  pressure surge i s  over before t h e  

r i s i n g  sal t  temperatures a f f e c t  t he  top head. 

pressure and temperature on t h e  top  head can be considered independently 

t o  determine which i s  l imi t ing .  

Therefore t h e  e f f e c t s  of 

In  ca lcu la t ing  the  most severe excursion to l e rab le  from the stand- 

point  of thermal s t resses ,  we chose 25,000 p s i  a s  t h e  l i m i t  on t h e  com- 

puted thermal s t r e s ses .  The rupture  l i f e  a t  t h i s  s t r e s s  l e v e l  i s  a t  

l e a s t  an hour a t  temperatures t o  1400'F, and the  y i e ld  s t r e s s  for rap id ly  

appl ied  s t r a i n s  i s  greater than th i s  a t  temperatures on up t o  1600'~ o r  

so. W a l l  temperatures w i l l  be  less than 1400'F i n  the l imi t ing  cases and 

t h e  high stresses will be of b r i e f  duration, so 25,000 p s i  i s  a conserva- 

t i v e  l i m i t  under these  accident  conditions.  Thermal s t r e s s e s  i n  the  top  

head were ca lcu la ted  assuming an instantaneous r i s e  i n  sa l t  temperature 

and a hea t  t r ans fe r  coe f f i c i en t  of 300 Btu/hr*f t2*"F between t h e  sal t  and 

t h e  head. 

l e s s  than t h e  25,000-psi l i m i t .  
d i f ference through t h e  w a l l  reaches a m a x i m  i n  about 16 seconds and de- 

creases t o  only lO'F i n  6 minutes.) An increase of 1 7 8 " ~  i n  t h e  tempera- 

t u r e  of t h e  s a l t  leaving t h e  vesse l  corresponds t o  an increase of about 

343°F i n  the  temperature a t  t h e  ex i t  af t h e  h o t t e s t  channel through t h e  

It was found t h a t  f o r  s t e p  changes of up t o  1 7 8 ' ~  s t r e s ses  were 

(For a 1 7 8 ' ~  s t e p  change, t h e  temperature 
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core. 

o u t l e t  temperature t o  r i s e  more than 340"F, thermal s t r e s s e s  w i l l  not 

damage t h e  top head. 

Therefore, i f  a nuclear incident does not cause t h e  hot  channel 

The f u e l  system was designed f o r  50 psig (more i n  some parts) with 

primary s t r e s ses  of 3500 p s i  or l e s s .  

a temperature excursion approaching the  l imi t ing  thermal stresses would 

produce a pressure surge of l e s s  than 90 ps i .  Thus t h e  pressure alone 

would produce primary s t r e s ses  of no more than 10,000 ps i .  

thermal s t r e s ses  a r e  l imit ing,  not t he  pressure surge. 

A nuclear inc ident  t h a t  would cause 

Therefore, t h e  

9.1.2 Uncontrolled Rod Withdrawal 

The cont ro l  rods a r e  the  most d i r e c t  means of increasing t h e  reac- 

t i v i t y .  The amount of excess r e a c t i v i t y  held down by the  rods can be as 

much as 2.8% 6k/k (with 23% f u e l )  and the  speed of t he  rods i s  such t h a t  

t he  r e a c t i v i t y  can be increased f a i r l y  rapidly.  

many r e s t r i c t i o n s  on the  rods. 
they include: adminis t ra t ive procedures, cont ro l  in te r locks  t h a t  i n h i b i t  

withdrawal a t  a 25-see period and i n s e r t  the  rods i f  t h e  period reaches 

5 see, and t h e  safe ty  system that scrams the  rods. It i s  conceivable, 

although very unlikely,  t h a t  some combination of misoperation and cont ro l  

systen malfunction could r e s u l t  i n  a r e a c t i v i t y  excursion with t h e  po- 

t e n t i a l  f o r  damage but, i n  such an event, the  sa fe ty  system can be  de- 

pended on f o r  i t s  design act ion.  

There are, of course, 

In  t h e  order of increasing r e l i a b i l i t y  

Uncontrolled rod withdrawal would have the  g rea t e s t  e f f e c t  i f  it began 

with the  reac tor  subcr i t ica l ,  i . e . ,  with the  f i s s i o n  r a t e  very low, and 

passed through c r i t i c a l i t y  with a l l  t h ree  rods moving i n  unison through 

the  region of maximum s e n s i t i v i t y .  

i n  t he  o r ig ina l  s a fe ty  ana lys i s .  

temperature and pressure excursions r e su l t i ng  from uncontrolled rod with- 

drawal would be d i f f e ren t  because of differences i n  rod worth, inherent  

neutron source strength,  delayed neutron f rac t ion ,  and temperature coef- 

f i c i e n t s  of r eac t iv i ty .  

with 23% f u e l  so  t h e  r e a c t i v i t y  increase would be f a s t e r .  

hand, the  stronger neutron source i n  the  23% f u e l  would tend t o  br ing  t h e  

f i s s i o n  r a t e  i n t o  t h e  range where safe ty  in te r locks  (and temper8ture 

This accident was analyzed i n  d e t a i l  

With 23% fuel ,  however, t he  power, 

The rod worth and s e n s i t i v i t y  a r e  about 30% higher 

On the  other  
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feedback) can a c t  a t  an e a r l i e r  point  i n  terms of t he  excess r e a c t i v i t y  

t h a t  has been introduced. These f ac to r s  a f f e c t  t he  a b i l i t y  of t he  sa fe ty  

system t o  suppress the  excursion. 

t h e  temperature feedback t o  shut down the  reactor ,  t he  delayed neutron 

f r a c t i o n  and t h e  temperature coef f ic ien t  of r e a c t i v i t y  would a l s o  be of 

grea t  importance. I n  the  case of a sustained r e a c t i v i t y  ramp such as 

t h i s  t h e  smaller delayed neutron f r ac t ion  i s  an advantage i n  t h a t  t he  

r eac to r  becomes prompt c r i t i c a l  and the  power begins t o  r i s e  rap id ly  when 

the re  i s  less excess r e a c t i v i t y  t h a t  must be cancelled by r i s i n g  tempera- 

tu res .  

r i s e  necessary t o  tu rn  down the  power. 

If there  were no sa fe ty  action, bu t  only 

The l a rge r  temperature coe f f i c i en t  fu r the r  reduces the  temperature 

I n  t h e  ana lys i s  of t h i s  accident we assumed t h a t  t he  rods would be 

poisoning 2.8% Sk/k when the  reac tor  i s  j u s t  c r i t i c a l .  ( T h i s  w i l l  be the  

condition a t  t he  end of t he  zero-power experiments, i n  which one rod w i l l  

'be ca l ib ra t ed  over i t s  e n t i r e  t r ave l . )  For t h i s  condition, t h e  reac tor  

would be s u b c r i t i c a l  by 4.2% Fk/k when t h e  rods a r e  f u l l y  inser ted,  and 

would go c r i t i c a l  with t h e  three  rods a t  28 inches withdrawal, s l i g h t l y  

above t h e  center  of t h e i r  range and very near t he  pos i t ion  of  maximum 

d i f f e r e n t i a l  worth. 

inser t ion ,  t he  f i s s i o n  power when c r i t i c a l i t y  i s  a t t a ined  would be somewhat 

grea te r  than 1 w a t t ,  which was used i n  the  ana lys i s .  

drawal i s  0.5 in./sec, giving a r a t e  of r e a c t i v i t y  increase of 0.093% 

6k/k sec a t  c r i t i c a l i t y .  

crease would continue for approximately 16 sec a f t e r  c r i t i c a l i t y ,  then 

would gradually slow down and f i n a l l y  s top  when t h e  rods reach t h e i r  upper 

limits a t  51 inches withdrawal. 

Following continuous withdrawal of the rods from f u l l  

The speed of with- 

If the  rods were not scrammed, t h i s  r a t e  of i n -  / 

The f i r s t  s t e p  i n  the  ana lys i s  of t h e  e f f e c t s  of t h e  uncontrolled 

rod withdrawal was t o  compute the  response i n  t h e  absence of a rod scram. 

These r e s u l t s  were needed t o  determine t h e  point  a t  which the  r e a c t i v i t y  

e f f e c t  equivalent t o  two rods scramming should be s t a r t e d  i n  the  compu- 

t a t ion .  Although u n r e a l i s t i c  and not d i r e c t l y  appl icable  t o  t he  sa fe ty  

evaluation because t h e  r e l i a b l e  scram of t h e  rods cannot be ignored, t h e  

r e s u l t s  of t he  computation with no safety ac t ion  are of some i n t e r e s t .  

Figure 9.2 shows these  r e s u l t s  f o r  t he  reac tor  fueled with 23?J. The 
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d i g i t a l  program used f o r  t he  calculat ions includes a de t a i l ed  numerical 

treatment of t h e  a x i a l  convection of heat  by f l u i d  motion during the  

power t ransient .24 

i n  t h e  r eac to r  channels and the  o u t l e t  temperature of t h e  h o t t e s t  channel 

are p lo t t ed  i n  Fig. 9.2. The calculated pressure r i s e  i n  t h e  core during 

t h e  period of very rap id  heating is  a l s o  shown. 

Both the  temperature of t h e  f l u i d  a t  t h e  h o t t e s t  point  

To e luc ida te  the  e f f e c t s  of t he  differences i n  the  important neutronic 

propert ies ,  we performed calculat ions s imi la r  t o  those of Fig.  9.2, using 

235U cha rac t e r i s t i c s  bu t  assuming t h a t  t h e  r e a c t i v i t y  addi t ion rates a r e  

i d e n t i c a l  (.093$ Gk/ysec),  and a l s o  t h a t  the  power l e v e l s  a t  t h e  time of 
c r i t i c a l i t y  a r e  i d e n t i c a l  (1 w a t t ) .  

l a t e d  nuclear excursions d i f f e r  only because of t h e  differences i n  delayed 

neutron f rac t ions ,  f u e l  temperature coef f ic ien ts  of r eac t iv i ty ,  and prompt 

neutron generation time. The r e su l t i ng  t r ans i en t s  calculated f o r  t h e  23% 

fuel are shown i n  Fig. 9.3. It is  evident t h a t  t h e  rap id- r i se  port ion of 

t h e  t r a n s i e n t  occurs la ter  i n  time than with the  23% fue l ,  s ince  more r e -  

a c t i v i t y  must be added t o  reach the  prompt c r i t i c a l  condition. 

t u r e  excursion i n  t h i s  admittedly f i c t i t i o u s  case i s  g rea t e r  with 23% 

because more r e a c t i v i t y  must be cancelled by t h i s  mechanism t o  s top  the  

power r ise and the  temperature coe f f i c i en t  of r e a c t i v i t y  i s  smaller than 

when 23% i s  t h e  f u e l .  

With these s implif icat ions,  t h e  calcu- 

The tempera- 

Although the  ca lcu la t ions  shown i n  Fig. 9.2 ind ica te  t h a t  t he  f u e l  

temperature and core pressure r i s e  incurred during the rap id  port ion of 

t h e  t r ans i en t  would be inconsequential, it i s  c l e a r  t h a t  counteraction of 

rod withdrawal would u l t imate ly  be necessary t o  prevent overheating i n  t h e  

core. 

i n  t he  23% case when t h e  neutron f l u x  l e v e l  exceeds 11.25 Mw. 

would be e f f ec t ive  i n  reducing t h e  t r ans i en t  t o  inconsequential  proportions. 

Therefore t h e  runaway rod accident w i l l  not damage t h e  primary contain- 

Figure 9.4 shows the  r e s u l t s  of ac tua t ing  the  rod scram mechanism 

This  ac t ion  

ment. 

Y 

24C. W. Nestor, Jr., ZORCH - An IBM-7090 Program f o r  t h e  Analysis of 
Simulated MSRE Power Transients with a Simplified Space-Dependent Kinetics 
Model, ORNL-TM-345 (September 1962) 
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The present s a fe ty  system provides an addi t iona l  margin of s a fe ty  by 

actuat ing the  rod scram when t h e  reac tor  period decreases below one second. 

The d i g i t a l  calculat ions f o r  t he  t r ans i en t  without s a fe ty  ac t ion  ind ica te  

t h a t  a one-sec period i s  reached a t  1.4 sec a f t e r  c r i t i c a l i t y ,  t h e  11.25-Mw 

l e v e l  i s  not reached u n t i l  5.3 sec, only 0.5 sec before t h e  maximum power 

i s  reached a t  5.8 see. The ac tua l  time of ac tua t ion  of t he  period-safety 

scram device i s  not simply a r r ived  a t  s ince it lags  the  attainment of t h e  

1-sec period by an i n t e r v a l  t h a t  depends on t h e  ion chamber cur ren t  and 

t h e  r a t e  a t  which the  period i s  decreasing. However, ca lcu la t ions  based 

on qu i t e  conservative assumptions on the  ac tua l  time of ac tua t ion  of t h e  

period scram show t h a t  t h e  power t r ans i en t  would be reduced by a t  l e a s t  

two orders of  magnitude below t h a t  shown i n  Fig. 9.4 and would be qu i t e  

i n s ign i f i can t .  

9.1.3 Sudden Return of Separated Uranium 

Two remote p o s s i b i l i t i e s  e x i s t  f o r  separat ion of uranium from molten 

f luo r ide  f u e l  sa l t .  If f luo r ine  should be l o s t  from the  sal t ,  t h e  

UF3/UF4 r a t i o  would increase, possibly t o  the  point  t h a t  meta l l ic  uranium 

would be produced by disproportionation of t h e  UF3 t o  UF4 and U. Second, 

i f  enough moisture or oxygen were introduced, Zr02 would be produced and 

p rec ip i t a t e  u n t i l  t h e  Zr4+,/U4+ r a t i o  f e l l  below 2; a f t e r  which some U02 

would form along with addi t iona l  Zr02. (Ref. 25) 
Neither of these  mechanisms w a s  expected t o  cause separat ion i n  the  

MSFLE, and experience has s-Jpported t h i s  expectation. Furthermore, t he re  

i s  no t rend i n  the  f u e l  chemistry t h a t  would ind ica te  t h a t  p rec ip i t a t ion  

of uranium or uranium oxide i s  l i k e l y  i n  fu tu re  operation. There has been 

no detectable  l o s s  of f l uo r ine  t o  increase the  UF3. I n  f ac t ,  as explained 

i n  Section 1.1.1, UF3 gradually decreases during power operation. 

of t he  f u e l  for oxides a t  i n t e rva l s  of approximately one month s ince the  

summer of 1966 has shown t h a t  t he  oxide content has been p rac t i ca l ly  steady 

a t  about 50 ppx. 

b i l i t y  of Z r 0 2  and even f a r t h e r  below the  point  a t  which U02 would begin 

Analysis 

This l e v e l  i s  more than a f a c t o r  of t e n  below t h e  solu- 

25W. R. Grimes, MSR Program Semiann. Progr. Report, Ju ly  31, 1964, 
ORNL-3708, p. 230. 
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t o  form. 
any uranium-bearing p rec ip i t a t e .  

s tate of t h e  s a l t  w i l l  be obtained by analyses a f t e r  t he  complete pro- 

cessing and before 23%’ addi t ions begin. 

The f luor ina t ion  of t he  o r ig ina l  f u e l  charge w i l l  not produce 

Ver i f ica t ion  of proper composition and 

Clear ly  i f  present conditions p e r s i s t  through the  operation with 

23%, as we expect them to,  there  w i l l  be no gradual d r i f t  toward uranium 

separat ion.  Nor i s  p rec ip i t a t ion  of U02 because of acc identa l  gross con- 

tamination of t h e  f u e l  with oxygen l ike ly ,  for the  reasons discussed i n  

t h e  o r i g i n a l  s a fe ty  analysis  repor t .  If however, desp i te  a l l  precautions, 

U02 should separate  from the  c i r cu la t ing  fue l ,  there  would be a de tec tab le  

e f f e c t  on r e a c t i v i t y  before a hazardous s i t u a t i o n  could develop. This 

conclusion i s  based on the  analysis  t h a t  follows. 

If U02 so l id s  were t o  appear i n  the  fue l ,  being more dense than the  

salt,  they would tend t o  accumulate i n  lower-velocity regions such as t h e  

lower head or t h e  v i c i n i t y  of t he  core support lugs.  

pos i t s  i n  these  regions i s  discussed on Page 84.) 
of t h e  separated uranium would almost ce r t a in ly  be l e s s  than when the  

uranium was dispersed i n  the  s a l t ,  so  the  r e a c t i v i t y  would tend t o  go down. 

Normally the  regulat ing rod would be withdrawn automatically t o  keep t h e  

r eac to r  c r i t i c a l .  If the  separated U02 were by some mechanism suddenly 

resuspended i n  t h e  salt, t h e  flow would carry it through t h e  core, pro- 

ducing a r e a c t i v i t y  excursion. The magnitude and the  time va r i a t ion  of 

the react ivi ty  would depend on the  amount of uranium returning and t h e  

d e t a i l s  of how it entered the  c i r cu la t ing  stream and the  core. 

analyzed a hypothet ical  case i n  which an increment of uranium i s  instan-  

taneously dispersed throughout t h e  10 f t 3  of f u e l  s a l t  i n  t he  lower head 

of t h e  reac tor  and then i s  ca r r i ed  up through the  core with the  flowing 

f u e l .  

culated from t h e  flow ve loc i t i e s  observed i n  the  MSRE hydraulic mockup 

and t h e  computed s p a t i a l  va r i a t ion  of nuclear importance i n  the  reac tor  

vessel .  t h e  

r e a c t i v i t y  e f f e c t  of t he  increment of uranium when it i s  uniformly d i s -  

persed throughout t h e  70 3’ of sal t  i n  t he  f u e l  loop. I n  our analys is  

we var ied the  s i z e  of the  increment and the  i n i t i a l  power l e v e l  t o  de- 
termine t h e  maximum amouni; of uraniuE t h a t  could be introduced i n  t h i s  

manner without causing damaging temperatures or pressure.  

(Detection of de- 

The r e a c t i v i t y  worth 

We have 

Figure 9.5 shows the  time dependence of t he  added r eac t iv i ty ,  ca l -  

The r e a c t i v i t y  e f f e c t  i n  t h i s  f i gu re  i s  normalized t o  Ak 
0’ 
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Figure 9.5. Time Dependence of React ivi ty  Addition due t o  Sudden 
Resuspension o f  Uranium i n  Lower Head of Reactor Vessel. 
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W 

w 

Some r e s u l t s  of a 

t h i s  case Ako i s  O.25$ 

i n i t i a l  power i s  1 kw, 

t yp ica l  ca lcu la t ion  a r e  shown i n  Fig. 9.6. I n  

(giving a peak added r e a c t i v i t y  of 1.2% 6k/k), t he  

t h e  core i n l e t  temperature i s  1200°F, and there  i s  

no safe ty  scram of the  cont ro l  rods. 
a t  t he  h o t t e s t  point  i n  the  core (which moves with t i m e )  and the  tempera- 

t u r e  of fuel leaving t h e  h o t t e s t  channel. During the  time when t h e  maxi- 

mum temperature i s  r i s i n g  most steeply,  the  pressure i n  the  core increases  

b r i e f l y  by 39 ps i .  

Shown i s  the  temperature of t he  f u e l  

The magnitude of t h e  temperature and pressure excursions depend on 

the  amount of uranium resuspended and a l s o  on t h e  i n i t i a l  power. 

9.7 and 9.8 i l l u s t r a t e  t h i s  dependence f o r  cases i n  which t h e  e f f e c t s  of  

scramming the  rods were not included. Figure 9.7 shows t h e  va r i a t ion  of 

temperature r i s e  with the  amount of uranium recovered f o r  two i n i t i a l  

power l e v e l s :  near f u l l  power and 1 kw. 

considered because it i s  a f ac to r  of ten  below the  lowest s teady-s ta te  

power a t  which t h e  reac tor  i s  rout inely operated. The reac tor  i s  c r i t i c a l  

below 10 kw only b r i e f l y  during s ta r tups . )  

Ak0 grea te r  than about 0.25% 6k/k, t h e  i n i t i a l  power makes very l i t t l e  

d i f fe rence  i n  t h e  o u t l e t  temperature r i s e  during t h e  excursion. 

sure  excursion i s  worse f o r  lower i n i t i a l  powers, as i l l u s t r a t e d  i n  

Fig. 9.8 for ak, = 0.25%. 
i s  taken i n t o  account, the  p ic ture  i s  completely changed. 

shows t h e  e f f e c t s  of rod scram a t  11.25 Mw. I n i t i a l  power i n  these  cases 

i s  1 kw, which, with only a l e v e l  scram, r e s u l t s  i n  l a rge r  pressure and 

temperature excursions than would occur if the  i n i t i a l  power were higher. 

Actually scram due t o  shor t  period would considerably precede t h e  11.25-Mw 

l e v e l  and the  excursions would be much less than indicated i n  Fig. 9.9, 
p a r t i c u l a r l y  a t  t he  low i n i t i a l  power. 

upper l i m i t  on t h e  disturbances i n  temperature and pressure t h a t  would 

r e s u l t  from recovery of various amounts of uranium. 

Figures 

(The l a t t e r  i s  the  lowest power 

For s izeable  recoveries,  i . e .  

The pres- 

When t h e  safe ty  ac t ion  of scramming the  rods 

Figure 9.9 

Thus, t h i s  f igure  i s  a conservative 

Based on Fig. 9.9, recoveries up t o  ak0 = 0.78% a t  l e a s t  will not 

cause t h e  hot-channel o u t l e t  temperature excursion t o  exceed the  343°F 

c r i t e r i o n  adopted t o  limit' thermal stresses t o  s a fe  values. Nor would the  

pressure excursion be ser ious a t  t h i s  ak So ak0 = 0.78% i s  a conservatively 
0' 
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Figure 9.6. Temperature Excursion Caused by Sudden Resuspension of 
Uranium Equivalent to 0.25% gk/k if Uniformly Distributed; Initial Power, 
1 kw; No Safety Action. 
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safe  l i m i t  on the  amount of uranium t h a t  could be resuspended suddenly 

without causing damage t o  the  f u e l  containment. 

Before uranium could be resuspended i n  the  lower head, it would have 

t o  f i rs t  separate from the  fuel ,  causing a r e a c t g i t y  decrease. 

assumes tha t  all t he  separated uranium comes back, then the  r eac t iv i ty  

decrease w i l l  equal&.  

resuspended, as i s  more reasonable, then the  r eac t iv i ty  decrease w i l l  have 

been la rger  than 4. Thus the  separation of enough uranium t o  cause po- 

t e n t i a l  damage by i t s  sudden and complete suspension would be attended by 

a decrease of a t  l e a s t  0.78% 6k/k. 

If one 

If only a f rac t ion  of the  separated uranium i s  

Separation of uranium would show up as  an anomalous change ( i n  the  

negative direct ion)  i n  the  residual  term i n  the  computed r eac t iv i ty  balance 

that i s  used routinely t o  monitor nuclear operation.26 Normally the  compu- 

t a t i o n  i s  done a t  5-minute in te rva ls  by the  on-line d i g i t a l  computer. 

precision of the  measurements and computation i s  about +0.02% 6k/k and an 

anomalous change of 0.2% 6k/k would be c l ea r ly  distinguishable from normal 

var ia t ions.  

nuclear operation when the  residual  term i n  the  r eac t iv i ty  balance i s  too 

large.  The prescribed l i m i t  w i l l  be something less than 0.78% 6k/k, pro- 

viding an added safeguard against  the development of a s i t ua t ion  with t h e  

poten t ia l  for damage due t o  resuspension of uranium. 

The 

An a b i n i s t r a t i v e  safe ty  l i m i t  will be imposed t o  prohibi t  

9.1.4 Fuel Additions 

The possible reacSivity, power and temperature e f f ec t s  of a fuel ad- 

d i t i on  through the  sampler-enricher a r e  qui te  m i l d  because the  amount of 

uranium and the r a t e  a t  which it can be introduced in to  t h e  core a r e  

l imited by the  physical system. 

The enriching capsules f o r  2 3 ~  operation w i l l  each contain 97 grams 

of uranium (88-g 233J). 
the  c i rcu la t ing  f u e l  s a l t  w i l l  produce a r eac t iv i ty  increase of 0.12% 6k/k. 
This could be compensated by 2 t o  3 inches of regulating rod inser t ion  o r  

by an increase of  l3'F i n  the core temperature. 

This amount of uranium, uniformly dispersed i n  

26J. R. Engel and B. E. Prince, The Reactivity Balance i n  the  MSRE, 
ORITL-TM-1796 (March 1967). 



The r a t e  a t  which added uranium mixes i n t o  the  core has been observed 

during twenty-seven capsule addi t ions of “5 with the  reac tor  operating 

a t  f u l l  power. 

t h e  core o u t l e t  temperature constant.  

l a t i n g  rod posi t ion as a function of t i m e  during a typ ica l  capsule ad- 

d i t i on .  (The p l o t  was made on-line by the  MSRE d i g i t a l  computer and most 

of t h e  indicated changes smaller than 0.1 inch a r e  not  r e a l  s h i f t s  of t he  

rod.) The l ag  and the  t r ans i en t  ind ica te  t h a t  t he  enriching s a l t  metls 

and disperses  rap id ly  i n  the s a l t  i n  t h e  pump bowl, then mixes i n t o  t h e  

c i r cu la t ing  stream with a time constant c lose  t o  t h e  residence time i n  

t h e  pump bowl. The same behavior was repeated i n  each of t he  twenty-seven 

addi t ions.  

4 times as g rea t  as those from 235U additions,  but  t he  regulat ing rod can 

eas i ly  keep up with the  change. If for any reason adminis t ra t ive cont ro l  

or t h e  servo system f a i l e d  and the  regulat ing rod w a s  not driven in, t he  

temperature and power would s ta r t  t o  r i s e ,  probably causing a l e v e l  scram 

a t  11.25 Mw. 

Each time the  regulat ing rod was servo-controlled t o  keep 

Figure 9.10 shows a p l o t  of regu- 

The r e a c t i v i t y  increase from a capsule of 233J w i l l  be about 

Certainly there  would be no damage. 

9.1.5 Graphite Effects  

As indicated i n  the  o r ig ina l  sa fe ty  analysis,  loss  of graphi te  from 
t h e  core i s  extremely unl ikely and would i n  any event cause no hazardous 

nuclear excursion. This conclusion i s  s t i l l  va l id .  Subs t i tu t ion  of 235 
f u e l  sa l t  f o r  an e n t i r e  s t r inge r  of graphi te  would cause t h e  r e a c t i v i t y  

t o  increase l e s s  than 0.2% 6k/k and t h i s  could not occur very rapidly.  

Graphite d i s to r t ion  because of i r r a d i a t i o n  e f f ec t s  would not be 

hazardous, but  t he  most recent  data  on t h e  kind of graphi te  i n  the  MSRE 

indica te  t h a t  exposure through t h e  proposed operation with 23-% should 

produce p rac t i ca l ly  no d is tor t ion .  

S a l t  penetrat ion of t h e  graphi te  has proved t o  be no problem. Speci- 

mens removed a f t e r  exposure during 24,000 Mwh of operation showed weight 

gains of 0.03% and only occasional s a l t  penetrat ion i n t o  cracks t h a t  

happened t o  extend t o  t h e  surfaces .= It w a s  calculated from analyses of 

27S. S. Kirslis  and F. F. Blankenship, MSR Program Semiann. Frogr. 
Rept. Aug. 31, 1967, ORNL-4191, PP 121-124. 
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these specimens t h a t  t he  t ,otal  amount of 235U i n  a l l  t he  core graphi te  

w a s  l e s s  than 4 g, a qu i t e  inconsequential amount. 

expect any change with su'bsti tution of 23-% for t h e  235U i n  the sa l t .  

There i s  no reason t o  

9.1.6 Loss of Load 

Several  load scrams from full power have shown t h a t  sudden i n t e r -  

rupt ion of a i r  flow through the  r ad ia to r  has no ill e f f e c t s  on the  system. 

The coolant system heats  up a t  a moderate r a t e  and, because the  la rge  gas 

volume i n  the  drain tank i s  connected t o  the  pump bowl surge space, t he re  

is  no detectable  pressure r i s e .  The load scram i s  accompanied by auto- 

matic cont ro l  ac t ion  t h a t  reverses the  rods when the  blowers s top  u n t i l  

t h e  nuclear power goes below 1 .5  Mw. This rod ac t ion  prevents any r i s e  

i n  core temperature, but  a s  shown i n  the  o r ig ina l  analysis ,  t he  temperature 

r i s e  would be a t  most 40°F without any cor rec t ive  act ion.  With the  23% 

f u e l  and i t s  l a rge r  temperature coef f ic ien t  of r eac t iv i ty ,  t he  temperature 

r i s e  would be even l e s s .  

9.1.7 Loss of Flow 

In ter rupt ion  of f u e l  c i r cu la t ion  produces two immediate e f f e c t s  i n  

the  core:  

a c t i v i t y  tends t o  increase, and heat i s  not ca r r i ed  out of t he  core by 

f u e l  flow so t he  temperature begins t o  r i s e ,  

s a fe ty  analysis  t h a t  even i n  the  absence of s a fe ty  act ion,  f u e l  flow 

interruption would cause no damage. 

for two reasons: 

0.08% instead of 0.21% f o r  235U fuel ,  and the  temperature coef f ic ien ts  of 

r e a c t i v i t y  a r e  l a rge r .  

and core heating t o  decrease more rapidly.  From a p r a c t i c a l  standpoint, 

however, there  i s  l i t t l e  or no difference; t he  sa fe ty  system would prevent 

undesirable excursions with e i t h e r  235U or 23% fue l .  

t h e  scram a t  11 kw prevents f i s s i o n  heat  from contr ibut ing much and without 

f i s s i o n  heat  t h e  core temperature w i l l  r i s e  very slowly i f  a t  a l l .  

delayed neutron precursors a r e  no longer swept out s o  the  r e -  

It w a s  shown i n  the  o r ig ina l  

The situation i s  b e t t e r  with 23% f u e l  

t h e  change i n  e f f ec t ive  delayed neutron f r a c t i o n  i s  only 

These differences would cause the  f i s s i o n  r a t e  

With the  pump o f f  

Y 
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9.1.8 "Cold-Slug" Accident 

The "cold-slug" accident i s  one i n  which t h e  mean temperature of t h e  

core decreases rap id ly  because of t h e  in j ec t ion  of f u e l  a t  an abnormally 

low temperature. 

t u r e  coef f ic ien t  of t he  f u e l .  O f  course, something of t h e  s o r t  occurs 

whenever t h e  power i s  r a i sed  by withdrawing more heat a t  t h e  r ad ia to r .  

But physical  l imi ta t ions  of t h e  load system make t h e  r e a c t i v i t y  rates 

moderate and not dis turbing even i n  t h e  absence of automatic rod act ion.  

Figure 9.11 shows system responses i n  j u s t  t h i s  s i tua t ion ,  where t h e  hea t  

removal was increased from 2 t o  7 Mw as quickly as possible  while t h e  

cont ro l  rods were kept s ta t ionary .  

worthy of t he  name there  must be some s o r t  of flow interrupt ion,  cooling 

and flow resumption. Another important f a c t  about t he  "cold-slug" acc i -  

dent i s  t h a t  it cannot happen if' the cont ro l  rods a r e  inser ted .  The fuel  

loading and the  rod worth a r e  such t h a t  t h e  core could be cooled t o  the  

s a l t  l iquidus temperature without going c r i t i c a l  i f  a l l  t h e  rods a r e  f u l l y  

inser ted .  

The r e a c t i v i t y  increases because of t h e  negative tempera- 

So for t he re  t o  be a tfcold-slug" 

I n  pr inciple ,  a cold-slug could r e s u l t  from in te r rupt ion  of e i t h e r  

Suppose t h e  coolant flow were in te r rupted  t h e  f u e l  o r  t h e  coolant flow. 

and p a r t  of the  coolant loop cooled down while t h e  f u e l  pump continued t o  

run. 
heat  exchanger and would show up a s  a f a i r l y  f a s t  reduction i n  core i n l e t  

temperature. 

s top  the  f u e l  pump i f  the  coolant flow drops. 

r e s u l t  i f  t h e  f u e l  pump were stopped while the  coolant flow continued. 

The f u e l  i n  t h e  heat  exchanger could be cooled down and then be introduced 

Then i f  t h e  coolant flow were resumed, a cold s lug would h i t  t h e  

But t h i s  i s  prevented by in te r locks  which scram t h e  load and 

A sharper cold-slug could 

t o  the  core by r e s t a r t i n g  t h e  f u e l  pump. In  t h i s  case a decrease i n  re- 

a c t i v i t y  due t o  l o s s  of delayed neutron precursors would be superimposed 

on the  increase due t o  f u e l  temperature a s  flow i s  resumed. 

aga ins t  a power excursion i n  t h i s  event i s  provided by an in t e r lock  which 

requires  t h a t  a l l  t h ree  control  rods be f u l l y  inser ted  before t h e  fuel 

pump can be s t a r t ed .  

Protect ion 

For t he  foregoing reasons we bel ieve a ser ious cold-slug accident i s  

p rac t i ca l ly  impossible. But i n  any case, t h e  nuclear excursion associated 
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with a n  incident  of t h i s  type should not be damaging t o  t h e  system. 

conclusion i s  reached by the  following argument. 

s a l t  i n  t he  c i r cu la t ing  system outside the  r eac to r  vesse l  furnace i s  only 

12  f t 3  - about half  t he  volume of s a l t  i n  the  passages i n  t h e  graphi te  

core. If t h i s  much subcooled s a l t  were pumped through t h e  core, t h e  

shape of t he  react ivi ty- t ime curve would be very near ly  t h a t  shown i n  

Fig. 9.5 f o r  t he  resuspended uranium. 

f i l l e d  with f u e l  a t  900°F, which i s  only s l i g h t l y  above the  l iquidus 

temperature, t he  excess r e a c t i v i t y  would be 1.8% 6k/k. 

peak r e a c t i v i t y  from resuspension of uranium equivalent t o  0.37% sk/k 

when uniformly dispersed. A s  shown i n  Section 9.1.3, a uranium-resuspension 

accident of t h i s  magnitude would not cause damage. 

b i l i t y  of a cold s lug causing a damaging nuclear excursion can be d i s -  

missed. 

This 

The t o t a l  volume of f u e l  

If t he  e n t i r e  core were suddenly 

This equals t he  

Therefore, t h e  possi-  

9.1.9 F i l l i n g  Accident 

The o r ig ina l  sa fe ty  analysis  repor t  included de ta i l ed  analyses of 

accidents i n  which t h e  reac tor  became s u p e r c r i t i c a l  while t h e  core w a s  

being f i l l e d  with f u e l  salt  under various abnormal conditions.  

accident of any consequence was found t o  be one i n  which t h e  core was  

f i l l e d  with f u e l  with a u r a n i m  concentration subs t an t i a l ly  higher than 

normal. The p o s s i b i l i t y  of such an accident was suggested by t h e  equi- 

librim crys t a l l i za t ion  path of t he  f u e l  mixture i n  which the  l a s t  phase 

t o  f reeze  i s  r i c h  i n  uraniurr. It was postulated t h a t  t he re  was p a r t i a l  

f reezing of the  sa l t  i n  a drain tank followed by physical separat ion of 

t h e  s o l i d  and l i qu id  phases, then a s e r i e s  of operator and equipment 

malfunctions. 

The only 

Since the  o r ig ina l  analysis ,  there  have been experiments dupl icat ing 

as nearly as possible  the  s i t ua t ion  i n  the  dra in  tanks during very slow 

cooling and freezing.28 Results of these showed t h a t  t h e  degree of 

28NSR Program Seniann. Progr. 3ept.  Feb. 28, 1965, o~m-3812 ,  
pp 126-127. 
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concentration and separat ion o r ig ina l ly  postulated a r e  u n r e a l i s t i c  and 

l e d  us t o  t h e  conclusion t h a t  a serious f i l l i n g  accident w i l l  not occur 

even i f  o ther  malfunctions a r e  assumed. 

Although no credible  f i l l i n g  accident threatens damage, t he  adminis- 

t r a t i v e  procedures t o  prevent any kind of abnormal f i l l  and t h e  automatic 

ac t ions  t o  terminate any such f i l l  w i l l  be re ta ined.  

9.1.10 Afterheat 

A s  discussed i n  the  o r ig ina l  sa fe ty  ana lys i s  report ,  problems associ-  

a t ed  with decay hea t  i n  the  MSRE a r e  qui te  moderate and requi re  no rapid 

emergency ac t ion .  

than was considered i n  t h e  o r ig ina l  sa fe ty  analysis,  because heat  t rans-  

fer  has l imi ted  f u l l  power t o  about 7.5 Mw r a the r  than the  10 Mw t h a t  w a s  

an t ic ipa ted .  (Because of differences i n  f i s s i o n  product yields ,  t he  

a f t e rhea t  from 23% f u e l  w i l l  be about 7% grea te r  than from 235U f u e l  

operated a t  the  same power.) 

tem on t h e  drain tanks has ample capacity and t h a t  t h e  s a l t  can be 

drained re l iab ly ,  but  t h a t  a drain i s  not e s sen t i a l  t o  a f t e rhea t  removal 

because heat  losses  from the  reac tor  vesse l  a r e  enough t h a t  overheating 

can be prevented simply ‘by turning off the  e l e c t r i c  heat  t o  the  furnace. 

Therefore, a f t e rhea t  poses no th rea t  t o  the  primary containment. 

The a f t e rhea t  i n  the  proposed operation w i l l  be l e s s  

Testing has ve r i f i ed  t h a t  t h e  cooling sys- 

9.1.11 C r i t i c a l i t y  i n  Drain Tanks 

The nuclear reactivLty of the unmoderated f u e l  s a l t  w i t h  the  pa r t i a l ly  

enriched 235U current ly  i n  use i s  somewhat lower than it will be when 23% 

i s  subst i tuted.  In  the  o r ig ina l  s a fe ty  analysis ,  t h e  d r a i n  tanks were 

shown t o  be c r i t i c a l l y  safe  even with t h e  assumption of some highly un- 

r e a l i s t i c  conditions t o  increase the  r e a c t i v i t y .  Because of t h e  grea te r  

r e a c t i v i t y  of t he  23=’LJ mixture these  assumptions have been reevaluated 

i n  terms of conditions t h a t  a r e  physically a t t a inab le .  

The most reac t ive  s i t ua t ion  i n  a drain tank would occur i f  the  e n t i r e  

f u e l  charge were s tored  i n  one dra in  tank and allowed t o  cool t o  room 

temperature. 

were supplied f o r  neutron moderation and, s ince the  dra’ln-tank cooling 

thimbles use water, it must assuned t h a t  the  thimbles w i l l  be f u l l  of 

An important increase i n  r e a c t i v i t y  would r e s u l t  i f  water 
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water f o r  t h e  worst condition. An external  water r e f l e c t o r  around t h e  

t ank  would a l s o  increase r e a c t i v i t y  but  t h i s  cannot be a t t a ined .  

only water ava i lab le  t o  the  drain tank c e l l  i s  t h a t  i n  t h e  t r e a t e d  water 
system and the  t o t a l  amount t h a t  could c o l l e c t  i n  t he  c e l l  would not 

reach even the bottom of the  lower head of t h e  dra in  tank, 

of a full drain tank a t  room temperature i s  sens i t i ve  t o  the  bulk densi ty  

of the  frozen sa l t .  

estimated t o  be 1.14 times t h a t  of l i qu id  s a l t  a t  1200°F. Although the  

bulk densi ty  f o r  a l a rge  mass of sa l t  w i l l  be less because of pores and 

cracks, t o  be conservative we used the  density named above i n  ca lcu la t ing  

r eac t iv i ty .  I n  the  calculat ions we did not include any e f f e c t  of uranium 

inhomogeneity because the  rapid heat  removal r a t e s  during freezing associ-  

a t ed  w i t h  the  presence of water i n  the  thimbles would produce frozen s a l t  

t h a t  i s  homogeneous from t h e  nuclear standpoint.  

Under normal f u e l  storage conditions, with a l l  t he  s a l t  i n  one dra in  

The 

The r e a c t i v i t y  

For small amounts of salt ,  t h i s  densi ty  has been 

tank a t  1200°F and no water i n  the  cooling thimbles, t he  neutron mul t ip l i -  

cat ion f a c t o r  w a s  calculated t o  be 0.85. 
( tank a t  room temperature, water i n  the  thimbles) ca lcu la t ions  gave a 

mul t ip l ica t ion  f a c t o r  of 1.00 w i t h  a l l  t h e  s a l t  i n  one tank. If the  s a l t  

i s  equally divided between the  two dra in  tanks t h a t  a r e  avai lable ,  

keff = 0.88 a t  roon temperature with water i n  the  thimbles. 

Using t h e  most reac t ive  conditions 

Because of t he  advantage i n  dividing the  fue l ,  i f  f reez ing  of t he  

sa l t  i s  ever ant ic ipated,  it w i l l  f i r s t  be divided equally between the 

two tanks. 

automatically drains  t o  both tanks, so t he  s a l t  would be l e f t  i n  a c r i t i -  

c a l l y  sa fe  condition even i f  the  operators had t o  leave immediately, before 

t h e  s a l t  drained. Only i f  there  should be an unplanned, extended bui lding 

evacuation during a shutdown i n  which a l l  t he  s a l t  i s  s tored  i n  a s ing le  

tank could there  be a chance of c r i t i c a l i t y  i n  t h e  drain tank. I n  t h i s  

case it i s  possible  t h a t  a n  e l e c t r i c  power f a i l u r e  would allow water t o  

be admitted t o  t h e  thimbles and the  sa l t  t o  f reeze.  Whether or not c r i t i -  

c a l i t y  would be reached i s  questionable because there  i s  some conservatism 

and uncertainty i n  the  calculated value of 1.00 f o r  keff a t  room tempera- 

tu re .  But  c r i t i c a l i t y  i s  conceivable, t o  say t h e  l e a s t .  

I n  an energency shutdown from power operation, t h e  f u e l  s a l t  

1 . 

I 
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Since c r i t i c a l i t y  i n  a dra in  tank cannot be absolutely ruled out 

under a l l  possible  circumstances with 23%, some evaluation of such an 

event i s  i n  order.  If c r i t i c a l i t y  did occur, it would not be u n t i l  t he  

f u e l  s a l t  was frozen and a t  a r e l a t i v e l y  l o w  temperature. A t  t he  low 

temperature, t he  r a t e  of temperature decrease and, hence, t he  r a t e  of 

r e a c t i v i t y  increase as kerf approached 1 would be very slow. 

mixture contains an intense inherent neutron source from 232U and i t s  

daughters, no nuclear excursion would r e s u l t .  Instead, t h e  nuclear power 

would r ise slowly t o  a l e v e l  just  su f f i c i en t  t o  maintain t h e  salt  a t  t h e  

c r i t i c a l  temperature. 

containment with s u f f i c i e n t  f i iological  shielding, so  no rad io logica l  

hazard would e x i s t  i n  the  reac tor  bui lding from t h a t  source. Thus, it 
would be possible  t o  reenter  t h e  reac tor  bui lding t o  s top  t h e  reac t ion  

by remelting t h e  s a l t  and t o  d i s t r i b u t e  it between the  two tanks f o r  s a fe  

s torage.  

Since the  

The drain tanks a r e  ins ide  t h e  reac tor  secondary 

9.2 Damage from Other Causes 

The o r i g i n a l  s a fe ty  ana lys i s  considered severa l  possible  causes of 

damage t o  t h e  primary containment other  than nuclear incidents .  

other  causes a r e  not a f fec ted  by the  change t o  23% fue l .  

system has now been operated and there  i s  experience per t inent  t o  each 

damage mechanism. Therefore, they a r e  re-examined here. 

These 

However, t h e  

9.2.1 Thermal S t r e s s  Cycling 

In  a normal heating and cooling cycle of the  s a l t  systems, tempera- 

tu res  may change from as l o w  a s  70°F t o  as high as 1300°F. 
was l a i d  out  with s u f f i c i e n t  f l e x i b i l i t y  t o  avoid excessive stresses due 

t o  expansion and contraction. Analyses indicated piping s t r e s ses  were 

7000 p s i  or l e s s  except a t  a nozzle on t h e  primary heat  exchanger. 

S t r a in  gage measurements i n  September 1965 showed maximum s t r e s s e s  the re  

were 15,500 p s i .  

could be damaging. Thus stresses caused by react ion forces  from piping 

a r e  inconsequential. 

The piping 

Even t h i s  i s  below t h e  point  a t  which stress cycling 

V 



Thermal gradients  do produce high s t r e s s e s  and p l a s t i c  s t r a i n s  i n  
some componeEts, notably the  f reeze  flanges.  

A s teep  r a d i a l  temperature gradient  i s  inherent  i n  t h e  design of t h e  

f r eeze  f lange.  

i n e r t i a  of t he  massive f lange r e s u l t  i n  p l a s t i c  s t r a i n s  a t  the  bore. 

Stresses  a r e  highest  a t  t he  bore and decrease rap id ly  with increasing 

radius  so  t h a t  damage due t o  therrnal cycling would f i rs t  appear a s  shallow 

cracks a t  t he  bore. 

f a t igue  t o  pred ic t  t h e  number of cycles of various kinds a t  which cracking 

would be expected t o  begin. 

reduced by a f a c t o r  of ten  t o  obtain t h e  following permissible numbers of 

cycles 

During thermal cycling t h i s  s teep  gradient  and t h e  thermal 

The flanges were analyzed on t h e  basis of low-cycle 

The calculated numbers of cycles were then 

heating cycle 

f i l l  cycle  

power cycle (coolant f langes)  

160 
58 
5 50 

Although, a s  described below, these numbers are used t o  prescr ibe  limits 
or? t h e  operating l i f e ,  t h e  f langes should survlve corsiderably more cycles 

withou2 consequential  damage. 

calculated cycles i s  conservative. Second, t he  il?i+,ial cracking would be 

s u p e r f i c i a l  and many cycles would be required t o  propagate a crack through 

the  pipe w a l l .  

F i r s t ,  the  sa fe ty  f a c t o r  of ten  on t h e  

Ar acccra te  h is tory  of t h e m a l  cycles i s  maintaized and t h e  e f f e c t s  

of t h e  d i f f e r e n t  kinds of  cycles a r e  combined by swnming t h e  f r ac t ions  

of t h e  permissible number of each kind of cycle  t h a t  have been sustained. 

Through t h e  s t a r t u p  i n  September 1967, t h e  f u e l  f r eeze  f langes had reached 

59% of permissible l i f e  on t h i s  bas i s .  

cluding 23%T s t a r t u p  experiments, w i l l  not exhaust t he  spec i f ied  p e m i s s i b l e  

l i f e  

The an t i c ipa t ed  operations,  i n -  

A s  a supplement t o  t he  f a t igue  ca lcu la t ions  for t h e  f r eeze  flanges, 

a tes t  f lange  was subjected t o  lo3 combiced heating and f i l l i n g  cycles.  

Althmgh t h e  permissible number of cycles, ca lcu la ted  a s  f o r  t h e  r eac to r  

flanges,  was only 30 cycles, dye-penetrant inspect ion showed r ~ o  evidence 

of damage a f t e r  t h e  1-03 cycles.  This t e s t  f a c i l i t y  has been reac t iva ted  

for continued cycling of t he  f lange.  



No component other  than the  freeze flanges 

thermal cycles during t h e  proposed operation of 

with t h e  next shor tes t  l i f e  i s  t h e  coolant pump 

l i f e  i s  ten times t h a t  of the  f reeze  flanges.  

w i l l  approach a l i m i t  on 

the  MSRE. The component 

and i t s  predicted service 

I n  summary, fa i lure  of t h e  primary containment because of s t r e s s  

cycling does not appear credible .  

9.2.2 Freezing and Thawing S a l t  

A s  the  f u e l  s a l t  melts i t s  spec i f ic  volume increases by a t  most 

5 percent. 

thawed and the  expansion were confined by frozen plugs on e i t h e r  s ide .  

S a l t  i s  rout inely frozen and thawed i n  the  f reeze  valves, but  the  

Conceivably t h i s  could r e s u l t  i n  damage i f  a portion of s a l t  

design i s  such t h a t  they a r e  not damaged. The pipe i n  the  valve is  f l a t -  

tened, permitt ing some expansion if required. The frozen plug i s  kept 

shor t  and thawing i s  done from the  ends toward the center  of t h e  plug. 

The adequacy of the  design from t h i s  standpoint w a s  proved by thorough 

t e s t i n g  of prototypes. 

i n  t h e  f reeze  valves.) 

(Stresses  a r e  so  low t h a t  f a t i g u e  i s  no problem 

The MSRE fuel sa l t  system i s  provided with heaters,  emergency power 

supply, and insu la t ion  t o  minimize the chances of accidental  freezing. 

f u e l  s a l t  has been frozen unintent ional ly  s ince it w a s  charged i n t o  t h e  

MSRE. 
possible  t o  heat and thaw from t h e  ends ra ther  than i n  t h e  middle. 

there  i s  no s i g n i f i c a n t  risk of damage due t o  f reezing and thawing t h e  

f u e l .  

No 

Furthermore, i n  case of f reezing i n  a pipe it would i n  general  be 

Thus 

There i s  p r a c t i c a l l y  no change i n  the  density of the  f l u s h  s a l t  or 
coolant sa l t  on thawing and thus no threat t o  the  containment. 

9.2.3 Excessive Wall Temperatures 

Since t h e  e n t i r e  s a l t  system of t h e  MSRE i s  e l e c t r i c a l l y  heated with 

an i n s t a l l e d  heater  capacity somewhat grea te r  than t h a t  ac tua l ly  required, 

t h e  p o s s i b i l i t y  e x i s t s  of heating the  system t o  abnormally high tempera- 

tures .  Local overheating of t h e  system by t h e  e l e c t r i c  heaters  i s  most 

probable when the  system i s  being heated while empty. The p o s s i b i l i t y  

of l o c a l  overheating i s  grea t ly  reduced when the  system is  s a l t - f i l l e d  

and l o c a l  overheating is  v i r t u a l l y  impossible when sa l t  i s  c i rcu la t ing .  



Yle operat ional  high tercperattlre l i m i t  for t h e  r eac to r  i s  1300°F and 

t k e  followisg s teps  have bee= taken t o  avoid exceeding t h i s  l i m i t .  

chanica; s tops a r e  placed on a l l  t h e  heater  c o i t r o l s  t o  l i m i t  t h e  hea ter  

power t o  110% of the  power requirenent f o r  100°F. This i n  i tself  should 

:bit t h e  temperature t o  about 1300OF. Thermoccuples are located under 

each heater  assem%ly, and the  w a l l  temperatxres of t h e  system are monitored 

C0ritil;uously Sy the  temperatme scanner wnich gives an alarm i f  any of t h e  

thermocouples exceed the  preselected lhit. 33 addition, t h e  on-line com- 
puter monitors numerous other  thermoco-dples a rd  gives an alarm if any of 

t h e  thernocoupies exceed t h e  alarm pc ig t .  

t i n e l y  checked aad recorded every 4 h m r s  so t h a t  any s ign i f i can t  changes 

ir heater  power wodd be promptly no5ed and co r rec t iom could be made if 

required e 

Me- 

Tne hea ter  s e t t i n g s  a r e  rou- 

Easteiloy-N has good high temperatidre s t r ecg th  propert ies ,  and the  

design s t r e s s  of t he  reac tor  systea was se lec ted  on t h e  b a s i s  of t h e  1300°F 

creep r a t e .  

shor t  term bas i s .  

C,ke s t r e s s e s  i n  t h e  MSE a r e  s u f f i c i e n t l y  low t h a t  temperatures of t h i s  

magnitude could be sa fe ly  to l e ra t ed  fcr  a shor t  time. Tests  loops of 

Tastelloy-N have rout ine ly  operated for r e i a t f v e l y  long periods of time 

a t  1500°F and t h e  reac tor  vesse l  was given a 100-hour hea t  treatment a t  

lbOO°F t o  improve t h e  mechanical proper t ies  of t 2 e  closure weld. 

Actually much higher tenperatures could be to l e ra t ed  on a 

The y i e l d  s t rength  a t  L?OO"F i s  about 20,000 psi ,  and 

I 

-2 conchlsion, t he  mechanical hea te r  s tops  prevent t h e  system from 

being overheated t o  ac tua l ly  daxigerous te-nperatures. 

exceefiing t k e  1300°F liroit i s  n T z k i z e 3  by the  'righ temperak-re alarms on 

the s c a x e r  ar,d computer ar?d by the  c lose  s - x v e i l l a r c e  of t h e  temperatures 

acd hea ter  s e t t i n g s  by t2e  operating personnel. 

The p o s s i b i l i t y  of 

Ir addi t ion  t o  t h e  p o s s i b i l i t y  of overheating by t h e  e l e c t r i c  heaters,  

excessively high temperatures i n  some areas  might a l s o  occur as a r e s u l t  

of nuclear rad ia t ion  heating. The two areas  of spec ia l  i n t e r e s t  are t h e  

r eac to r  vesse l  and the  upper surface of t he  f u e l  pump tank. 

Calculations indicated t h a t  heating of t he  r eac to r  ves se l  and in-  
t e r n a l  structxres by gamna rays from f i s s i o n s  and f i s s i o n  products d i s -  

t r i bu ted  nomal ly  i n  t h e  f u e l  sa l t  would produce only t r i v i a l  temperature 

I 

W 
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elevat ion and thermal s t r e s ses .  

outs ide of t h e  reac tor  vesse l  have shown no e f f e c t s  of any consequence. 

Pa r t i cu la r ly  c lose  a t t en t ion  i s  given t o  thermocouples on t h e  lower head 

and adjacent  t o  t h e  core support lugs, f o r  it i s  here, i f  anywhere, t h a t  

any so l id s  i n  the  salt  would accumulate. 

monitors t h e  temperature difference between the  reac tor  i n l e t  l i n e  and 

six locat ions on the  lower head and four  locat ions a t  t h e  core support 

lugs.  

exceed spec i f ied  limits. 

and 2.1 "F/Mw respect ively f o r  t he  lower head and core support lugs, and 

the re  has been no s ign i f i can t  change s ince the  beginning of power opera- 

t i o n  t o  suggest hea t  generation from the  buildup of  a deposit .  

Observation of thermocouples on the  

The on-l ine computer continuously 

An alarm i s  given by the  computer i f  t he  temperature differences 

These temperature differences have been 1.5 

Conservative design calculat ions indicated t h a t  rad ia t ion  from f i s s i o n  

products i n  t h e  gas space i n  the  f u e l  pump could cause ser ious heat ing of 

t h e  upper surface of t he  tank. 

cooling shroud t o  l i m i t  temperatures and produce a d i s t r ibu t ion  giving low 

thermal s t r e s ses .  Sustained operation of t h e  reac tor  a t  power proved t h a t  

t h e  temperature d i s t r ibu t ion  was sa t i s f ac to ry  with no forced a i r  cooling 

and t h i s  was adopted a s  the  normal mode of operation. When 23% i s  sub- 

s t i t u t e d  i n  t h e  fue l ,  t h e  heat t h a t  must be removed through t h e  upper pump 

tank surface should increase by about 50 percent.  This i s  a consequence 

of t h e  higher y i e ld  of t h e  short- l ived krypton isotopes from 23%J f i s s i o n  

(about a f a c t o r  of  two over 235U y ie lds ) .  

t h e  shroud may be required, bu t  a moderate amount, wel l  within t h e  capaci ty  

of t he  system, will be adequate t o  maintain tank temperatures a t  a s u i t a b l e  

l eve l .  

Thus the  pump design included an a i r -  

Some cooling a i r  flow through 

I n  conclusion, rad ia t ion  heating i s  not a c red ib le  cause of damage 

t o  the  primary containment. 

9.2.4 Corrosion 

There i s  abundant evidence t h a t  corrosion has not and w i l l  not weaken 

t h e  MSRE piping and vessels .  
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F i r s t ,  t he re  i s  t h e  bas ic  character  of t h e  corrosion process i n  

molten f luo r ide  systems.29 

these systems so corrosion protect ion does not depend on t h e  i n t e g r i t y  

of such a f i l m .  

dr iving forces  of t h e  corrosion react ions.  

t h e  s a l t  a r e  much more s t a b l e  than the  s t r u c t u r a l  metal f luor ides ,  so  

there  i s  a minimal tendency t o  corrode the  metal .  Thus the  p r inc ipa l  

source of corrosion becomes t h e  t r a c e  impurit ies,  such a s  HF, which can 

be control led.  

No f i lm of oxidation products develops i n  

Instead corrosion i s  control led by the  thermodynamic 

The f luo r ides  t h a t  c o n s t i t u t e  

Corrosion data  on Hastelloy-N i n  LiF-BeF2 based s a l t s  have been 

generated i n  thermal- and f orced-convection loops and i n  i n p i l e  capsules. 'O 

Operation of 37 thermal-convection loops (17 f o r  a year o r  more) demon- 

s t r a t e d  t h e  compatibi l i ty  of Hastelloy-N with various f luo r ide  mixtures. 

Subsequently 15 forced-convection loops were operated a t  temperatures 

from 1200°F t o  1500°F, with a temperature d i f fe rence  of 200°F (except f o r  

one loop with 100°F AT) f o r  periods up t o  20,000 hours. Metallographic 

examination of surfaces  exposed a t  1200 t o  1400°F showed no evidence of 

a t t a c k  during t h e  f i rs t  5000 h r  of operation; a t  longer times a t h i n  ( l e s s  

than 0.5 m i l ) ,  continuous in t e rme ta l l i c  l aye r  was f a i n t l y  discernable.  

A t  1500°F, t h e  surface l aye r  was depleted of chromium, as indicated by 

moderate subsurface void formation t o  a maximum depth of 4 m i l s  a f t e r  

6500 hours. 

loops have shown no e f f e c t  of rad ia t ion  on t h e  corrosion behavior of 

9as telloy-N i n  the  f luo r ide  s a l t s .  31 

Numerous i n p i l e  t e s t s  involving capsules and forced-circulat ion 

Corrosion i n  t h e  MSRE has been monitored by frequent ana lys i s  of t h e  

s a l t s  f o r  corrosion products and by examination of two sets of specimens 

taken from t h e  core, t he  f i r s t  i n  August 1966 and t h e  second i n  May 1967. 

'%. R.  Grimes, Chemical Research and Development f o r  Molten-Salt 
Breeder Reactors, ORNL-"-1853, (June 1967) pp 37-45. 

30H. E. McCoy, Jr. and J. R .  Weir, Jr., Materials Development f o r  
Molten-Salt Breeder Reactors, ORNL-TM-1854, (June 1967) pp. 18-26. 

"W. R .  G r i m e s ,  op.cit . ,  pp. 46-56. 
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Chromium i n  the  f u e l  s a l t  i s  the  bes t  ind ica tor  of corrosion of t he  

Hastelloy-N, s ince corrosion se l ec t ive ly  a t tacks  the  chromium and the  pro- 

duct, CrF2, i s  qu i t e  soluble i n  t h e  Therefore t h e  MSRE f u e l  has 

been sampled and analyzed for chromium a t  l e a s t  once a week during opera- 

t i on .  Chromium analyses of f u e l  s a l t  samples taken from the  reac tor  over 

a period of more than two years a r e  shown i n  Figure 9.12. 
from 38 t o  72 ppm corresponds t o  170 g of chromium, which i s  t h e  amount i n  

a 0 .2  mil-layer of Haste:Lloy-N over the  e n t i r e  metal surface i n  t h e  c i rcu-  

l a t i n g  system. 

peared i n  the  s a l t  while it was i n  the  drain tanks between runs. The 

ind ica t ion  i s  t h a t  chromlum has been leached from a 0.6 - 1.2-mil layer  i n  

t he  dra in  tanks and from only 0.08 m i l s  i n  t he  c i r cu la t ing  system. 

i s  some reason t o  bel ieve t h a t  an extremely t h i n  layer  of noble-metal 

f i s s i o n  products on loop surfaces i s  responsible f o r  t he  v i r t u a l  non- 

existence of corrosion there .  

has been qu i t e  low. 

The increase 

However, t he  data suggest t h a t  most of t he  chromium ap- 

There 

Bu t  i n  any event, t he  generalized corrosion 

The indicat ion of extremely low corrosion i n  the loop w a s  subs tan t i -  

The a t ed  by the  condition of survei l lance specimens exposed i n  t h e  core.  

f i r s t  s e t  was exposed t o  s a l t  for 2800 hours, during which time t h e  reac tor  

power generation amounted t o  7800 Mwhr. 

showed any evidence of corrosion.33 

was s l i g h t l y  modified by the  addi t ion of 0.5% T i  or 0.5% Zr, w a s  exposed 

t o  sal t  f o r  4300 hours and 24,900 Mwh. The metal surfaces were only 

s l i g h t l y  discolored, and metallographic examination showed no appreciable 

None of the Hastelloy-N specimens 

A second se t ,  i n  which the  Hastelloy-N 

corrosion. 34 

Operation of t he  MSRE has a l s o  provided information on the  corrosion 

of t h e  Hastelloy-N vessels  and piping from t h e  outside, t h a t  is  by the  

32W. R .  Grimes, op.eit., pp. 40-43. 

3%. E.  McCoy, Jr., An Evaluation of the  MSRE Hastelloy-N Surveil lance 
Specimens - F i r s t  Group, ORNL-TM-1997, (November 1967) p. 50. 

34MSR Program Semiann. Progr. Rept. Aug. 31, 1967, ORNL-4191, p. 203. 
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c e l l  atmosphere. 

furnace around t h e  reac tor  vessel  a f t e r  11,000 hours a t  high temperature, 

covering a l l  t he  power operation up t o  t h a t  date.  There was no evidence 

of n i t r i d ing ,  and the maximum depth of oxidation was only about 3 m i l s . 3 5  

Visual examination of a cont ro l  rod removed i n  January 1967 a l s o  disclosed 

only moderate oxidation of t he  surface i n  the  8500 hours the  rod operated 

a t  high temperature i n  i t s  thimble i n  t he  core.  

In  June 1967, a s e t  of specimens was removed from the  

9.2.5 Radiation DamaRe t o  Container Material  

The e f f ec t s  of neutron i r r a d i a t i o n  on Hastelloy-N were discussed i n  

Section 1.1.2 of t h i s  report .  In  summary, the  i r r a d i a t i o n  e f f e c t s  a t  MSRE 
temperatures a r e  a reduction i n  t e n s i l e  d u c t i l i t y  and a reduction i n  t h e  

f r ac tu re  s t r a i n  during s t r e s s  rupture t e s t s .  The rupture  l i f e  was a l s o  

reduced a t  high s t r e s s  levels ,  bu t  the  ava i lab le  data  a t  lower s t r e s ses  

show only a small reduction (Fig.  1.1). 

strength,  and creep r a t e  were not s ign i f i can t ly  a f fec ted  i n  regard t o  MSRE 

operation. 

The ul t imate  strength,  y i e ld  

The primary s t r e s s  l eve l s  i n  the  reac tor  vesse l  during normal opera- 

t i o n  are wel l  below the  range of the t e s t s  on i r r ad ia t ed  material ,  bu t  

extrapolat ion of t he  data ind ica t e  t h a t  t he  decrease i n  rupture  l i f e  should 

not be enough t o  shorten the  service l i f e  below t h a t  contemplated f o r  t h e  

23% operation. Calculat,ions have indicated t h a t  t he  secondary s t r e s ses ,  

thermal s t r e s ses ,  and s t r e s ses  from piping react ions a r e  a l s o  s a t i s f a c -  

torily low.  36 

during normal operation because of t he  r e l a t i v e l y  t h i n  sect ions and the  

s l o w  thermal response of t he  reac tor  system t o  power and load changes. 

Transient thermal s t r e s ses  would have t o  exceed the  y i e ld  point  before the  

l i f e  of t h e  r eac to r  would be reduced, and even then the  s t r e s s e s  would be 

re l ieved  without ac tua l  f a i l u r e  of t h e  vessel .  

S igni f icant  t r ans i en t  thermal s t r e s ses  do not develop 

351bid. 

36R. B. Briggs,  Effects  of I r r ad ia t ion  on the  Service Li fe  of t he  ~- - 
Molten S a l t  Reactor Experiment, Trans, Am. Nucl. SOC., lO(1) : 166-167 
(June 1967). 



Since normal operations and the cred ib le  r e a c t i v i t y  accidents  (with 

safe ty  system ac t ion)  do not produce high s t r e s s e s  i n  t h e  r eac to r  vessel ,  

we be l ieve  t h a t  t he  vesse l  can be used safely,  desp i te  r ad ia t ion  e f f ec t s ,  

f o r  t h e  proposed l i f e  of t h e  experiment. 

10. EZLEASE FROM SECON!IARY CONTAINMENT 

Ultimate r e l i ance  f o r  protect ion of t h e  public from the consequences 

of any cred ib le  accident i n  the  MSRE is placed on the  secondary containment 

t h a t  surrounds t h e  f u e l  s a l t  system. 

a containment leak  rate t h a t  could probably be a t t a ined  and assayed t h e  

p o s s i b i l i t y  of damage that would s i g i i f i c a n t l y  increase t h e  leak  rate. 

the  ana lys i s  considered the  s i t u a t i o r  t h a t  would place t h e  most s t r ingen t  

demands on the  containment - t h e  simultaneous s p i l l a g e  of gross quan t i t i e s  

of t he  f u e l  sa l t  and water i n  t h e  r eac to r  c e l l .  

and d i spe r sa l  of f i s s i o n  products indicated that  the  secondary containment 

adequately l imi ted  t h e  consequences of t h i s  hypothet ical  event. It was 

l a rge ly  on t h i s  bas i s  t h a t  t h e  USAM: comluded t h a t  t he  MSRE could be 

operated "without undue r i s k  t o  t h e  hea l th  and sa fe ty  of t h e  publ ic ."  

The o r i g i n a l  s a fe ty  ana lys i s  assumed 

Then 

Calculations of leakage 

Periodic t e s t s  of t he  secondary contairunent a t  high pressure have 

invariably shown lower leak  r a t e s  than were assumed, and the re  has been 

Eothing t o  reduce confidence i n  the  s t rength  and r e l i a b i l i t y  of t h e  con- 

ta innent .  Therefore from t h e  star,dpoint of containment adequacy, any 

differences between the  operation o r ig ina l ly  approved and t h e  proposed 

operation with 23% f u e l  must l i e  wholly i n  the  amounts of f i s s i o n  pro- 

ducts t h a t  must be contained. There a r e  d i f fe rerces ,  p a r t l y  because t h e  

y i e lds  

l imi ted  t o  7.5 Mw ins tead  of t he  10 Mw o r ig ina l ly  contemplated. 

ca lcu la t ions  show t h a t  t he re  w i l l  be less of each of t he  important ca te -  

gor ies  of f i s s i o n  products i n  t h e  s a l t  than w a s  considered i n  t h e  o r i g i n a l  

sa fe ty  analysis .  (There w i l l  be 9% l e s s  iodine, 27% l e s s  bone-seekers and 

11% less kidney-seekers.) On t h i s  basis ,  then, we a s s e r t  t h a t  t h e  con- 

c lusion of t h e  USAM: i s  s t i l l  va l id  and the  proposed operation wi l l  not 

e n t a i l  undue r i s k  t o  t h e  hea l th  and sa fe ty  of t h e  public.  

f i s s i o n  a r e  d i f f e r e n t  acd p a r t l y  because t h e  power i s  

Detailed 
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. 
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