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The cpestion has been poscd whether one could. pulse a molten-salt 

reactor  so  as -to achieve an integrated f .~ux  of PP nsutrons/cm2 per  

burs t  i n  a t e s t  cavity a t  the center of the reactor, and, i f  so, what 

energy y ie ld  would be required and what would be the shape of the pulse? 

The nominal objectives appear to be: 

a> 1-2 x neutrons/crn2 per burst, without a t i g h t  specification 

on %he neutron spec-imij 

2) a buyst width i n  the neighborhood of 10 msec or  l e s s .  

Since it appears t h a t  the second objective sksuld be easy t o  sa t i s fy ,  

we have looked a t  the poss ib i l i ty  of achieving the f i rs t  without much 

regard f o r  fac tors  which mighc, influence the burst  shape, znd have sub- 

sequently estinated the burst  width f o r  m e  of several  reactor con- 

figurations one might contemplate using. 

I. Selection of S a l t  

The calculztions were based on use of thd salt L i F  (73 mole 5)  
UF4 (27 m o l e  $1, and for each reactor considered, the c r i t i c a l  enrich- 

-ment of the uranixq was determined. Separated Li7 would of course be 

used I 

Relevant properkies of the salt are: 

Melting point, "C 490 
Specific heat of the melt, cal/gm 'C 0.217 

Density of  the m e l t ,  gm/crf13 3.26 - 9.3 X IO-" T("C) 

2. Allowable Energy Input 

We postulate that the ternperature os" the salt could be allowed t o  

rise 1090°C, i . e . ,  nominaLl!-y frorrl 500°C t o  l ' jO0"C.  The prcpert ies  

given above yleld the following val-ues a t  LO00"C (average tei-ipcszture) : 

I 
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Density 4.33 gm/crn13 

§peeific heat 4 wsec/cm3 
Thus, the integrated f lux  t h a t  can be obialned. i n  the t e s t  cavity 

corresponds t o  a maximum energy density of 4 kwsec/cn? per  burst .  

3 .  Geometry - 

For the purposes of t h i s  preliminary expl-oration, we postulate 

s-gherical geometry, with concentric regions and dimensions as follows : 

T e s t  cavity (void) 

Ni shell 
fieled sa l t  

Ni s h e l l  

Graphite she l l  

case wzs examined with 

15 cm radius 

1 c m  thick 

2-7 t o  60 cm thick 

3 cm thick 

23 crn thick 

the thickness of the outer Ni con- 

t a ine r  increased to E? cm, end the  graphite shell omitted; this was 

done for a 60-cm-thick sa l t  region. 

4. Results 

!€!he integrated fluxes obtainable i n  the t e s t  cavity a re  shown f o r  

each case i n  Table 1, along with geometrical specifications and other 

derived results.  Some of these r e su l t s  e r e  a l s o  p l o t t e d  i n  Fig. 1. 

The neutron spectrum for case #s, with 92-cn-BB core ( 3  ft) is 
shown i n  Fig. 2, a s  t he  in t eg ra l  above energy E, as a function of E, 

E 

where the time integrat ion i s  taken 

comparison, the f i s s ion  spectmm i s  

neutrons. 
, ~ ,  

In case #?, which w z s  the same 

over the  duration of the burst .  

a l so  g.iven, narr;.ialized to 1 X IO1" 
For 

8 s  case #13 except t h a t  the 3-cm X i  

and 23-cm grhphite shells were repl.accd by a single 23-cm N i  shell, both 

the pezk-to-average power density ratio and t h e  integrated flux i n  the 

t es t  cavity were the same as i n  case #I-* 

_, 
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Table 1. Burst Charadterfstics vs Core Size 

Integrated Flux in . 
FueP Test Cavity 

Case Outside Fuel Critical R Burst 
Number Dimeter Volume Enrichment 235u xass p !hta1 >lOO kev Yield 

: 4 (liters) ($) 0%) a% (neutrons/cm* x 1QWx6) (Mw set) 

4 152 1821 17.5 854 1.545 3.4 0.97 4714 

1 122 934 1-9.7 493 1.423 3.1 0.95 5333 

6 112 718 21.1 398 1.378 3.0 0.94 2084 
7 102 538 22.2 333 1.331 2.8 0.92 1615 
8 92 : 391 24.2 253 1.282 2.7 0.91 12x4 

9 82 '272 27.3 200 1.231 2.3 0.88 883 
* 10 72 3-78 32.1 153 1.1.78 2.2 0.84 605 

11 62 108 41.4 12Q I.123 1.7 0.77 382 

a Far all cases shown, catity outside diameter = 30 cm, inner shell thickness = 1 cm, outer 
shell thickness = 5 cm, graphite shell thickness = 25 cm. 
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h estimate of the buret width was made f o r  ease #2 (not l i s t e d  

i n  Table 1) which w a s  the sme as ease #l except t h a t  the graphite shel l  

thickness was PO em. 

lated, by use sf the DTF transport  eoae, and f o n d  t o  be 9 x PO' seceP. 

The b u s t  width was estimated approximately fmm the e x g r e s s i ~ n l  

The Rossi a a t  delayed c r i t i c a l ,  a&, was calcu- 

where M = 

2 dollars, the burst width a t  half m a f i m  i s  estimated t o  be 0.4 msec. 
me reactors  smaller than case #2 w o u ~  hive narrower bursts. 

(p-I) and p i s  the reac t iv i ty  i n  doPPass. mus, f o r  p = 

5. Discussion 

Several in te res t ing  features  a re  apparent from these results. 

a)  me reactors are all f a s t ,  i.e., from 25 t o  40$ of the t o t a  

integrate& flux is above 188 kev, and essential%y 81% of %he f1u.x is 
above P kev. 

b) The flux sf neutrons above 100 kev i s  quite insensi t ive t o  
reac tor$ ize ,  when the n o m b i z a t i o n  i s  for a given maxinun energy 

density (e.g., 4 kwsec/c$). mis is so because the peak-to-average 

power density r a t i o  rises with increasing core s ize  (see ~ a b ~ e  1) e 

t o t a l  f lux  fa l l s  off  f a i r l y  sharply w i t h  decreasing core size below 

perhaps 30 i n .  dian. 

4ehe 

e >  A single  nickel container shell, perhaps 6 in .  thick, appears 
L 

t o  be a sa t i s fac tory  reflector,  yielding quite flat power dis t r ibut ions,  

at Peast f o r  the case studied. It i s  possible that some gains could be 

realized by optimizing the container-reflector regions of the assembly. 

Buss% widths. While the burst  widths have not been calculated 

- '  

c i )  
with great care, the r e s u l t s  obtained for one of the Largest cores 

studfea appear to s0m.m the expectation that the pulses of the desirea 
magnitude w i l l  be less than 1 ansee i n  widkh. 



. . .<.<.2 Very PittEe attention has SQ far been given to engineering aspects 
$r‘ of a practical bur3t reactor. The quenching mechanism, aepenaing on 

ex@mr;ion Qf the Piquiel fueb, can be significantly affected by detafPe 

sf the gesmetri Cal arrangement, such as the shape of the mre (e .g; ) 

spbericab QF cy'bindrical)~, and the location of the~free Pi&id surface. 

e of temperatures that can 'be p&d&ted imy be ext%nded 
I 

somewhat by pressurizing the cover gas, and in any event the core veaseb 

will heave to be capable sl" withstanding su~stanti~~.'~chanic~ 3hockr;. 

A thick ve33eP wi%% therefore probably be required. 

Details of the contrsl mechanisms, and in partictiar of the t%evices 

fsr intrcackcing reactih6y very rapidly, wil$. require coneiderab.Je 

6. swary 

A first look at the possibilfty of using a molten-sa.ILt reactor ts 

0 
I 

e 
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prohu2e intense, sham bursts of neutron3 indicates that fluxes of 

2-3 x 10"" neutrons/cm2 per burst can be achieved in a centr&l test 

cavity. This can be accomplished with a core perhaps 30 %n. in outer 

&h.meter, having a vohme of about 200 liter33 3.1~2 with a burst yield 

of about 700 Mw set- 91ae neutrons are essentially aU. above 31 kev, &pad 

a third of the ri?hax is above 100 kev. 7333 e3tim3.tea buret wrath is fess 

than IL m3ec. 



One of the above reactors,  operating i n  burst  mode with a m a x i m  

energy density of 4 %Iw s e c l l i t e r ,  may be compared with a similar reactor  

operating a t  constant ,power with a maxim power density sf 4 Wj'liter 

and with a coolant temperature r i s e ,  AT, equal t o  P080'C times the 

residence time of the fuel  i n  the core, i n  seconds. The implication i s  

of course that  a reactor  Like case #lo, fo r  example, a t  a power Bevel of 
608 W, woad  pmillace a totab (fast) f l u  i n  the t e s t  cavity of 2 x 1 0 ~ ~  
neutssas/cm2sec. 

led t o  speculate that such a reactor, w i t h  cooling adequate f o r  600-Mw 
operation, could be operated i n  pulsed mode w i t h  a pulse repetitlorn rate 

of' l / sec .  Since the  pulses could then not be i n i t i a t e d  from a very low 
neutron Eevel, it is daub t rn  that pulses as short as those c i t ed  above 
could be achieved. We have not yet estimated what pulse shape might be 

obtained a t  such a h i  

i n t e re s t ing  p o s s i b i l i t i e s  here worth f'urtlner investigation. 

The power density of 4 Mw/liter is probably at ta inable .  One is 

repet i t ion ra te ,  but these appear ta be sC%m 
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