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FORENORD 

t 

The behavior of the  "noble metal" f i s s ion  products i n  the  f u e l  sa l t  
i s  a subject of major importance t o  the design of molten-salt reactors.  

A considerable amount of data bearing on the  subject was obtained from 
operation of the Molten-Salt Reactor Experiment. All o r  par t  of the  data 

has been studied wi th  various degrees of thoroughness by many people w i t h  

d i f f e ren t  backgrounds and d i f f e ren t  viewpoints. Unfortunately, t he  chemi- 

c a l  and physical s i tua t ions  i n  the  reac tor  were complex and the data ob- 

tained are not very accurate o r  consistent.  Consequently, no one has de- 

veloped an explanation of the detai led behavior of noble metals t h a t  i s  

acceptable t o  a majority of the  knowledgeable observers. 

agreed t h a t  most of the  f i s s i o n  products from niobium through tellurium 

are reduced t o  metals i n  the f u e l  salt,  that  they migrate t o  metal and 

graphite surfaces and t o  sal t -gas  interfaces ,  and tha t  they adhere t o  the 

surfaces wi th  varying degrees of tenacity.  

involved 

by other  processes i n  the reactor  

opinions vary widely. 

the  data and explanation of some aspects of the operation of the  reactor.  

Although others  would analyze the  data d i f f e ren t ly  and would reach d i f f e r -  

en t  conclusions concerning some of the mechanics, we bel ieve tha t  publica- 

t i o n  of t h i s  report  w i l l  provide information he lpfu l  t o  the design of 
molten-salt reactor  systems and t o  the  development of a b e t t e r  understand- 

ing of t he  behavior of f i s s i o n  products i n  those systems. 

It i s  generally 

The d e t a i l s  of the processes 

and the  manner i n  which the  noble metal p a r t i c l e s  may be affected 

are subjects of frequent debate i n  which 

This report  describes the  author 's  in te rpre ta t ion  of 
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ABSTRACT 

The Molten-Salt Reactor Experiment (MSRE) i s  a fluid-fueled experi- 

mental nuclear reactor;  consequently, f i s s i o n  products are dispersed 

throughout t h e  e n t i r e  f u e l  c i rcu la t ion  system. One group of f i s s ion  

products, referred t o  as noble metals, e x i s t s  i n  the  f u e l  salt i n  t h e  

reduced meta l l ic  state. They de- 

pos i t  on surfaces exposed t o  salt  such as the  Hastelloy N piping and the 

moderator graphite. 

l iquid-gas in t e r f ace  i n  the  f u e l  pump. 

these surfaces and on other  deposit ion sites have been measured. 

measxrements have been analyzed within the framework of mass t r ans fe r  

theory. The analysis  has been found t o  cor re la te  the da ta  fram these 

sources i n  a unified manner. It i s  therefore  concluded t h a t  t h e  noble 

metals do migrate i n  accordance w i t h  mass t r ans fe r  theory, although some 

parameters s t i l l  remain unevaluated. 

p l e in  some of the dramatic differences i n  reac tor  operating character is-  

t i c s  between the 235U and 233U runs. 
noble metal deposit ion experiments be conducted i n  a c i r cu la t ing  s a l t  

loop. 

They are insoluble  and unwet by salt.  

They apparently accumulate i n  a stable form on the 

The amounts of noble metals on 

These 

A hypothesis i s  presented t o  ex- 

It i s  recommended t h a t  addi t iona l  

Keywords: Fiss ion Products + Hoble Metals + Mass Transfer 

+ MSRE + Experience + Bubbles + Foaming + M i s t  + Physical Propert ies  

+ Entrainment + O f f - G a s  System + Void Fractions + Corrosion Products 

f Fluid Flow 
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1. INTRODUCTION 

The goal of the Molten-Salt Reactor Program a t  Oak Ridge National 

Laboratory i s  t o  develop t h e  technology f o r  an e f f i c i e n t  power producing, 

thermal-breeding (based on the Th-"'U cycle) nuclear reac tor  f o r  commer- 

c i a l  use. The f u e l  i n  a molten-salt breeder reac tor  i s  f lu id ,  and con- 

sists or' UF,: and ThF,: dissolved i n  a c a r r i e r  salt  mixture of LiF and BeF2. 

The l iqu idus  temperature ranges from 800 t o  940°F, depending on t h e  exact 

c a r r i e r  sa l t  composition, with t h e  nominal r eac to r  operating temperature 

being -120OOF. 

and then through a heat exchanger where it t r ans fe r s  heat  t o  a secondary 

s a l t  system, which then generates steam i n  another heat  exchanger. One of 

t h e  unique fea tures  of t h i s  concept i s  t h a t  the  f u e l  i s  i n  the  l i qu id  

state. 

t i a l l y  very low f u e l  cycle cost .  The f lu id  f u e l  a l s o  creates  a few l i a -  

b i l i t i e s ,  one of which i s  t h a t  the  f i s s i o n  products a r e  spread throughout 

t h e  e n t i r e  f u e l  loop and o ther  hydraulically connected regions (e.g., o f f -  

gas system, dump tanks, etc.). 

The f u e l  salt  i s  pumped through a graphite-moderated core 

This gives r ise t o  many advantages, the pr inc ipa l  one being poten- 

A 7.3-MW(t) experimental reac tor  based on t h i s  concept was b u i l t  and 

operated a t  Oak Ridge National Laboratory. This reactor ,  t h e  Molten-Salt 

Reactor Experiment (hereaf te r  cal led the  MSm), first went c r i t i c a l  i n  

Zune 1965. Nuclear operations were terminated i n  December 1969. Being 

an experimental reactor ,  it was subjected t o  a good deal of t e s t i n g  and 

observation. 

t i o n  of t h e  various f i s s i o n  products i n  the  f u e l  loop and connected re- 

gions. This information i s  c r i t i c a l  i n  the design of l a rge  cen t r a l  power 

s t a t i o n s  [lo00 MW(e)] where t h e  heat generated by f i s s i o n  products i s  sub- 

s t a n t i a l .  

One of t he  pr inc ipa l  e f f o r t s  was t o  determine t h e  d i s t r ibu -  

Fission products i n  molten f u e l  salt  can be grouped i n t o  three  pr in-  

c i p a l  types where the  mechanics of migration i s  t h e  distinguishing fea- 

ture - (1) sa l t  seekers, (2 )  noble gases, and ( 3 )  noble metals. 

seeking f i s s i o n  products (which include Sr, Y, Zr, I, C s ,  Ea, and C e )  are 
t h e  best behaved. They are soluble i n  a fue l  sa l t  and remain with the 

fue l  sa l t  i n  inventory amounts. The noble gases a r e  K r  and Xe.  A g rea t  

The sal t -  
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dea l  of work has been done t o  understand noble gas migration, par t icu-  

l a r l y  135Xe because of i t s  thermal neutron cross sec t ion  of over lo6 
barns. The t h i r d  group, the so-called "noble metals,tt Nb, Mo, Ru, Sb, 
and Te, i s  the subject of t h i s  report .  

the  UF3 i n  the  f u e l  s a l t ,  and therefore  e x i s t  i n  s a l t  i n  the  meta l l ic  

s t a t e .  They a r e  insoluble i n  f u e l  s a l t  and a r e  unwet by it. Because of 

t h e i r  incompatibil i ty with s a l t  they migrate t o  various surfaces (graph- 

i t e  and Hastelloy N )  and adhere t o  them. 

gas-liquid in te r faces  and adhere t o  these i n  a s t ab le  manner. 

a l s  have been found and measured i n  f u e l  s a l t  samples and gas phase sam- 

p les  on the surfaces of Hastelloy N and graphite survei l lance specimens 

i n  the  core, and on the  f u e l  loop and heat exchanger surfaces. I n  t h i s  

repor t  we s h a l l  present a theory of noble metal migration based on conven- 

t i ona lmass  t r ans fe r  concepts. 

mentioned samples and measurements i n  the  framework of t h i s  theory, and 

show t h a t  noble metals apparently do migrate from the  f u e l  s a l t  t o  t h e i r  

The noble metals a r e  reduced by 

. 

They apparently a l s o  migrate t o  

Noble met- 

We s h a l l  then analyze data  from the  above 

various deposi tor ies  i n  accordance w i t h  the  theory. 

t h i s  analysis  i s  t h a t  noble metals migrate and adhere t o  l iquid-gas i n t e r -  

faces. A s  such, they apparently have propert ies  s imi la r  t o  insoluble  sur- 

face ac t ive  agents. 

vations on f i s s i o n  product behavior i n  the  reactor .  

t o  suggest an explanation f o r  t he  ra ther  dramatic difference i n  reac tor  

operating charac te r i s t ics  between runs made w i t h  235U and 233U fuels .  

A major t h e s i s  of 

This idea w i l l  be used t o  explain many of t he  obser- 

It w i l l  a l so  be used 

2. DESCRIPTION OF THE MSRE 

2.1 General Description 

The purpose of t he  MSIiE was t o  demonstrate, on a p i l o t  plant  scale, 

the  safety,  r e l i a b i l i t y ,  and maintainabi l i ty  of a molten-salt reactor .  

The operating power l e v e l  was 7.3 MW(t). 

other  considerations, it was not intended t o  be a breeder, and no thorium 

was added t o  the fuel .  The f u e l  consisted of UFh and UF3 dissolved i n  a 

mixture of LiF, BeF2, and ZrF4. I t s  composition and physical propert ies  

a r e  given i n  Table 2.1. A l l  f u e l  loop components a r e  constructed from 

Because of i t s  small s i z e  and 

m 
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Table 2.1. MSKE Fuel Sa l t  Composition and Physical Properties 

Composition - LiF, BeF2, ZrF4, UF4 

Liquid type - Newtonian 
(65.0, 29.1, 5.0, 0.9 mole 8) 

English Units Metric Units 

Liquidus temperature 813°F 434°C 

Properties a t  1200°F (650°C) 

Density 141 l b / f t 3  2.3 g/m3 
Specif ic  heat 0.47 Btu/lb *OF 2.0 X lo3 J/kg*"C 
Thermal conductivity 0.83 Btu/hr a f t  0°F 1.43 W/m "C 
Viscosity 19 lb / f t*h r  28 kg/h *m 
Vapor pressure <o. 1 m-Hg <1 X bar  

I f  

: 

F 

0.3 mole $ 235U and 0.6 mole $ 238U. a 

Hastelloy N, which i s  e s sen t i a l ly  unwet by f u e l  s a l t  under normal operat- 

ing conditions. The nominal operating temperature was 1200°F with a 40°F 

temperature change across the  core and primary heat exchanger. 

Figure 2.1 i s  a schematic flow diagram of the MSRE, which w i l l  be 

More de ta i led  descr ipt ions of t he  reactor  and described b r i e f l y  here. 

t h e  concept a r e  ava i lab le  i n  Refs. 1, 2, and 3.  The f u e l  loop consisted 

e s sen t i a l ly  of a centr i fugal  pump, a heat exchanger, and the  reac tor  

vessel .  

conventional U-tube type w i t h  the fuel salt on the shell side. Heat w a s  

t ransfer red  t o  a secondary coolant s a l t  t h a t  i n  tu rn  dumped it t o  the  

The nominal flow r a t e  was 1200 gpm. The heat exchanger was a 

atmosphere v i a  a la rge  radiator .  

s a l t  was drained i n t o  e i t h e r  of two dra in  tanks. 

During periods of shutdown, the  f u e l  

I n  addition, a t h i r d  

dra in  tank contained a load of f lush  s a l t  f o r  r ins ing  the  f u e l  loop p r i o r  

t o  any maintenance t h a t  was required. 

the primary and secondary s a l t  loops f o r  easy disconnection of main compo- 

nents should they need replacement, and a l s o  the  use of f reeze valves i n  

Note the  use of f reeze flanges i n  

the  dra in  l i nes .  

charcoal beds, and then absolute f i l ters  before it was discharged up the  

stack. Charac te r i s t ics  of the reac tor  core and f u e l  pump influenced the  

Off-gas from the pump bowl passed through a volume holdup, 
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mechanics of noble metal f i ss ion  product migration, s o  they w i l l  be des- LJ 
.. cr ibed in  somewhat more d e t a i l  i n  t h e  following sections.  

The MSRE went c r i t i c a l  June 1, 1965, and nuclear operations were 
* 
0 terminated December 12, 1969. 

17,655 h r .  

operation. 

w a s  operated with 235U fue l .  

235U replaced with 233U. 

operated with 233U fuel .  

w i l l  be from data  obtained during t h e  233U runs. 

The reactor  was  c r i t i c a l  f o r  a t o t a l  of 

Figure 2.2 i s  a b r i e f  h i s t o r i c a l  out l ine of the  MSRE’s power 

Note par t icu lar ly  t h a t  f o r  t he  first 2 1/2 years t h e  reactor  

The f u e l  w a s  chemically processed and t h e  

Then f o r  the  last  1 1/2  years,  t he  reactor  w a s  

Most of t h e  results presented i n  t h i s  report  

2.2 Description of the  Reactor 

A deta i led  view of t h e  MSRE core and reactor  vessel i s  shown in 

Figure 2.3. 

t i o n  volute near t h e  top  of t h e  vessel .  

1-in.-thick annular passage bounded by t h e  reactor  vessel  and reactor  

core can and i n t o  the lower vesse l  plenum. The fuel then passed up 

Fuel sa l t  entered t h e  reactor  vessel  through a flow dis t r ibu-  

It then flowed down through a 

li through t h e  graphite moderator region and out t he  top  ou t l e t  pipe. The 

moderator assembly w a s  composed of graphite s t r ingers  about 5 ft long and 

2 i n .  square. The s t r inge r s  had grooves cut  longitudinally i n  t h e  four 

faces ,  so t h a t  when t h e  s t r ingers  were stacked together ve r t i ca l ly ,  t h e  

grooves formed t h e  f u e l  channels. 

of Union Carbide Corporation). 

t h e  f u e l ,  and unwet by fuel sal t  under normal MSRE operating conditions. 

In t h e  bulk of t h e  fuel channels (95 percent of them), t he  f u e l  salt 

veloci ty  w a s  about 0.7 f’t/sec, yielding a Reynolds number of about 1000. 

1 
M 

The graphite w a s  grade CGB ( t rade  name 
. 

It w a s  unclad, i n  intimate contact with 

The entrance t o  the  f u e l  channels through the  moderator support g r id  

s t ruc ture  w a s  ra ther  tortuous and turbulence w a s  generated t h a t  pers i s ted  

f o r  some distance up i n t o  the f ie1  channels. 

thought t o  have been e s sen t i a l ly  laminar in  most of t h e  length of t he  

Nevertheless, t he  flow i s  

fuel channel. 

Located near the center  l i n e  of t h e  core i n  a square array w a s  an 
2 

arrangement of th ree  control  rods and one surveil lance specimen holder. 

Details of t h e  specimen holder are shown i n  Figure 2.4. It was  positioned 

v e r t i c a l l y  i n  t h e  reactor  and extended t h e  e n t i r e  height of t he  moderator 

region. 

b 1 

u A t  times when t h e  reactor  w a s  shut down and drained, t h e  
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survei l lance specimen holder w a s  removed from the  core and taken t o  a 

hot c e l l  where the  samples could be removed. Samples consisted of 

graphite specimens, Hastelloy-N rods f o r  t e n s i l e  strength t e s t s ,  and 

Hastelloy-N flux monitor tubes.  

only pa r t  of t h e  samples need t o  be removed, and t h e  remaining samples 

along with new replacements could be reinser ted in to  the reactor  f o r  

fur ther  i r r ad ia t ion .  

The specimen assembly was made so t h a t  

Fission product deposition measurements were then 

made on the  graphite and Hastelloy-N specimens, which had been removed 

from the  sample holder. 

2.3 Description of the  Fuel Pump 

The fue l  pump turned out t o  be a very important component i n  under- 

standing noble metal migration in  the  MSRE. 
i s  shown i n  Figure 2.5. I ts  rated capacity i s  1200 g p m  of fue l  salt a t  

48.5 f t  of head. 

re fer red  t o  as the  pump bowl, which served a var ie ty  of purposes. 

contained the only f ree  l i qu id  surface i n  the  system and therefore  

served as an expansion volume fo r  sa l t .  It also contained the  135Xe 

s t r ipp ing  system, a s a l t  l eve l  indicator ,  and the fue l  salt  sampling 

f a c i l i t y .  

adequate f o r  t h e  normal operating ranges of t h e  MSRE, but w a s  not  adequate 

A d e t a i l  drawing of t he  pump 

The volute i s  completely enclosed i n  another vessel  

It 

The fuel expansion capacity of the  pump bowl was more than 

for some postulated accident conditions. Therefore, t h e  pump bowl w a s  

provided with an overflow tank t h a t  would fill if t h e  s a l t  l eve l  i n  t h e  

pump bowl reached the  l e v e l  of t h e  overflow pipe. The normal operating 
helium pressure i n  t h e  pump bowl, which w a s  a l so  t h e  pump suction pres- 

sure,  w a s  about 5 psig.  

The xenon s t r ippe r  w a s  a gas-liquid contacting device. A to ro ida l  

spray r ing  containing many small holes (146 - 1/8 i n .  holes ,  and 145 - 
1/16 in .  ho les ) ,  sprayed t h e  sal t  through t h e  gas phase. 

which resu l ted  i n  a mean j e t  ve loc i ty  of 7.2 f t / s ec ,  w a s  estimated (not 

measured) t o  be at a rate of about 50 gpm. 

The sal t  flow, 

The xenon r ich  cover gas w a s  
purged from the  pump bowl by a continuous flow of clean helium from 

(1) t h e  pump shaft  purge, (2 )  two bubbler l eve l  ind ica tors ,  and (3) t h e  

reference pressure l i n e  purge f o r  t h e  bubblers. 

t o  t h e  off-gas system described e a r l i e r .  The overflow tank a l so  had a 

bubbler l e v e l  indicator  and i t s  purge also went t o  t he  off-gas system. 

The purge gas then went 

I 
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The spray je ts  impinging on the  salt  surface generated large amounts of 

helium bubbles and f l u i d  turbulence i n  the pump bowl. 

manifested themselves i n  several  ways i n  the  operation of the  MSRE. 

one sense t h e i r  presence was unfortunate because it complicated the under- 

standing of many observations in  t h e  reactor ,  but i n  another sense it w a s  

for tunate  because it l e d  t o  the suggestion of e f f i c i e n t  ways of removing 

f i s s i o n  products (pa r t i cu la r ly  noble gases, but possibly also noble 

aiid 
These bubble9 - 

In 
t 

metals ) from future molten-salt reac tor  systems. 

Let us examine the  behavior of gas bubbles i n  the  salt  in  the  pump 

bowl by first considering the  carryunder of bubbles. 

that  t he re  are two bubblers and they are  at d i f fe ren t  depths. 

ence i n  reading between the bubblers, one can deduce information on t h e  

average f l u i d  density between them, 

were measured i n  th i s  region.'4)Certainly most of t h e  bubbles w e r e  large 

and would r i s e  t o  the  surface,  but some of them were small and would be 

car r ied  down i n t o  the pump suction t o  c i r cu la t e  with t h e  f u e l  salt .  

Estimates of t h e  s ize  of t h e  s m a l l  bubbles ind ica te  they were l e s s  than 

0.010 in .  i n  diameter. The amounts of bubbles c i rcu la t ing  with fuel salt  

could be estimated by analysis  of (1) l e v e l  changes i n  the  pump bowl, 

(2) nuclear r e a c t i v i t y  balances i n  the  core,  (3) sudden pressure release 

tes ts ,  ( 4 )  s m a l l  induced pressure per turbat ions,  and ( 5 )  other less 

d i r e c t  observations. 

t h e  volume f rac t ion  of c i r cu la t ing  bubbles i n  t h e  f u e l  loop during the  
235U runs was 0.0002 t o  0.00045, (4'5)and the void fraction during the 

233U runs w a s  0.005 and 0 . 0 0 6 . ( ~ ) ~  hypothesis i s  presented i n  Section 3.3 

t o  explain t h i s  r a the r  l a rge  change i n  c i r cu la t ing  void f rac t ion  between 

the  235U and 233U runs. The same hypothesis i s  used t o  explain the dif-  

ference i n  overflow rates discussed next.  

Note from Figure 2.5 
By d i f f e r -  

Void f r ac t ions  as high as 18 percent 

i 

L w 

The general  conclusion from these  analyses i s  that  

Now consider the bubbles tha t  rise t o  the  surface i n  t h e  pump bowl. 

There are s t rong indicat ions t h a t  they produced a f r o t h  with a high l i q u i d  

content on the sal t  surface. For instance,  there was  a constant flow of 

f u e l  sa l t  from t h e  pump bowl t o  t h e  overflow tank even though the  indi-  

cated salt l e v e l  i n  the  pump bowl was  w e l l  below t h e  overflow pipe. 

Per iodica l ly  t h i s  salt w a s  forced back i n t o  the  pump bowl by pressuriz- 

ing t h e  overflow tank with helium. This t r a n s f e r  must have been due t o  

0 . 

l 

G 

kd 
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f r o t h  flowing over t h e  l i p  of t h e  overflow pipe, or t o  a m i s t  of salt 
d r i f t i n g  i n t o  t h e  overflow pipe,  or t o  both. Overflow rates during the  

235U runs ranged from 0.4 t o  1.5 lb /hr .  During the  233U runs they ranged 

from 4 t o  10 lb /h r  with excursions up t o  70 l b /h r . (4 )  A simple comparison 
indicates  t h a t  a r a in  of "more than the  hardest t o r r e n t i a l  downpour" ( 4  1 

would have been required t o  match the  lowest overflow rate during the  

233U runs. 
t e n t  flowing dom the  overflow pipe accounted f o r  t h e  high overflow rates. 

There may a l so  have been m i s t  i n  t h e  pump bowl. It i s  w e l l  known t h a t  t h e  

mechanical action of a high ve loc i ty  j e t  impinging on a l i q u i d  surface 

w i l l  generate a m i s t .  Bursting bubbles are a l s o  known t o  produce m i s t .  

There are physical indicat ions from t h e  reac tor  t h a t  a m i s t  w a s  present 

i n  t h e  pump bowl. 

which w a s  probably due t o  f reezing of salt from a m i s t .  

suspended in  the  gas phase of t h e  pump bowl w e r e  covered w i t h  s m a l l  drop- 

l e t s  when re t r ieved  (see Figure 4 of R e f .  4) .  
analysis  of gas samples taken from t h e  pump bowl, we w i l l  explain t h e  

r e s u l t s  by theorizing t h a t  a salt m i s t  was probably being sampled. , 

A reasonable conclusion i s  t h a t  f ro th  with a high l i qu id  con- 

For example, t h e  off-gas l i n e  plugged per iodica l ly  

S t r i p s  of metal 

Later when we discuss t h e  

A f a c i l i t y  w a s  provided f o r  taking salt  samples from the  bowl of the  

f u e l  pump. This sampling f a c i l i t y  was  used for a va r i e ty  of purposes 

including (1) taking f u e l  salt  samples, ( 2 )  taking gas phase samples, 

(3 )  adding uranium t o  the  f u e l  salt, ( 4 )  adding chemicals t o  t h e  f u e l  

sa l t  t o  control  i t s  oxidation-reduction state,  and ( 5  ) exposing materials 

t o  f u e l  salt f o r  shor t  periods of t i m e .  The sampling f a c i l i t y  w a s  qu i te  

complex, and included a dry box, i so l a t ion  valves, remote handling gear,  

shielding,  instrumentation, e t c .  A de ta i led  descr ipt ion of t h e  e n t i r e  

f a c i l i t y  i s  not necessary f o r  t h e  purposes of t h i s  report ,  and only the  

sample s t a t i o n  i n  the  pump bowl i s  shom i n  Figure 2.6. 
sample s t a t ion  i s  enclosed by an overlapping sh ie ld  arrangement. 

desired t o  take t h e  salt  and gas samples under r a the r  quiescent con- 

d i t ions ,  and t h i s  sh ie ld  w a s  intended t o  prevent t h e  m i s t ,  foam, and 

f l u i d  turbulence generated by the spray r ing  from penetrat ing t o o  aggres- 

s ive ly  i n t o  the  sampling region. 

f r e e  movement of salt  through the  sample region. 

of t h e  sh i e ld  i s  not  closed, and a l so ,  t he  sh i e ld  i s  elevated off  t h e  

Note t h a t  t h e  

It w a s  

The sh ie ld  does not ,  however, prevent 

The overlapping portion 
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bottom of the  pump bowl. The sample capsule shown i s  typ ica l  of t h e  first 

kind of capsules used i n  the  MSRX. 

capsule." During 

normal sampling, it was  lowered with t h e  sample t ransport  cable u n t i l  it 

w a s  w e l l  below t h e  salt surface. After f i l l i n g ,  it w a s  l i f t e d  out of t h e  

sal t  and suspended for  a period of time a short  distance up i n  t h e  trans- 

por t  pipe in  order t o  freeze the salt .  It was  then withdrawn, i so la ted  

from the  f u e l  system, and taken t o  a hot c e l l  f o r  analysis.  During t h e  

sampling period, a s m a l l  purge of helium w a s  maintained down, t h e  trans- 

port  pipe. 
cribed l a t e r .  

I 

It i s  re fer red  t o  as a "ladle 

It i s  simply a container with open por t s  i n  the  side.  

, 
I 

Fig. 2.7 shows other  sample capsules used which w i l l  be des- ~ 

3. FISSION PRODUCT EXPERIENCE I N  THE MSRE 
3.1 General Fission Product Disposition 

In t h i s  section we w i l l  discuss i n  a qua l i t a t ive  way t h e  general 

disposi t ion of f i s s ion  products i n  t he  MSFG3, and the  techniques used t o  

measure t h i s  disposit ion.  

also discuss t h e  ra ther  dramatic differences i n  the  reactor  operating 

charac te r i s t ics  when fueled with 235U and 233U, and propose a reason f o r  

t h i s  difference,  

, 
The emphasis'will be on noble metals. We w i l l  

1 
I 

I 
1 

A systematic way of c lass i fying f i s s ion  products i n  the  MSRE, based 

on t h e i r  migrational charac te r i s t ics ,  i s  as follows: 

(1) salt  seekers,  

(2 )  noble gases, and 

(3)  noble m e t a l s .  

I A s  a group and under normal MSRE operating conditions, t he  sal t  
I 
! 

seekers 

seekers are Sr ,  Y,  Z r ,  I, Cs, Ba, C e  and Nd. Unless affected by 

migrational charac te r i s t ics  of t h e i r  precursors, they remain dissolved 

are the  best behaved of a l l  f i s s ion  products. Examples of salt  

I i n  t h e  fuel salt  i n  inventory quant i t ies .  Consider t he  following gen- 
! era l ized  be ta  decay scheme of f i ss ion  products: 
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(1) (1) (1) (1) 
La + C e  + Pr + Nd -t 

where (1) - salt seeker,  

( 2 )  - noble gas, 

(3) - noble metal, and 

( 4 )  - noble metal or salt  seeker depending on 
oxidation-reduction state of f u e l  salt. 

Note that  Kr (a noble gas) i s  a precursor of Rb, Sr, Y and Zr (salt 

seekers) and a l so  t h a t  Xe (a noble gas)  i s  a precursor of C s ,  Bay La  and 

Ce (salt seekers).  

of I ( a  salt  ' seeker ) .  

dramatically a f fec t  t he  ultimate disposi t ion o f t h e  salt seekers them- 
selves. For instance 9 5 Z r  has a y ie ld  of about 6.2 percent but i t s  pre- 

cursor,  9 5 K r ,  has a y i e l d  of only 0.007 percent and i s  very short  l ived .  

Therefore any migrational tendency of t h e  95Kr w i l l  have l i t t l e  e f f e c t  

on t he  9 5 Z r .  Indeed the  complete 9 5 Z r  inventory was  found i n  t h e  fue l  

salt. ( 6 )  
cumulative y i e l d  of 6.15 percent.  

of 137Xe  t h a t  has a y i e l d  of about 6.0 percent and a ha l f  l i f e  of 

3.9 min. Xenon can be t ransfer red  t o  t h e  off-gas system and also can 

d i f fuse  i n t o  the  porous s t ruc tu re  of t h e  graphi te .  Accordingly, only 

80 t o  90 percent of t he  137Cs inventory w a s  found i n  t h e  fuel salt  

and s igni f icant  quant i t ies  were found deep ins ide  the graphi te  where .it 
deposited upon decay of i t s  precursor." ( 7 y 8 )  In conclusion, t h e  salt  

seeking f i s s ion  products are w e l l  behaved and remain dissolved i n  t h e  

c i rcu la t ing  f u e l  salt  i n  inventory quant i t ies  except when influenced 

by t h e  behavior of t h e i r  precursors. 

Also note t h a t  Sb and Te (noble m e t a l s )  are precursors 

The behavior of precursors of salt  seekers may 

As opposed t o  t h i s ,  consider t he  salt seeker 137Cs with a 

Most of i t s  y i e l d  comes from t h e  decay 

(6  1 

There are only two noble gas fissicn products, Kr and Xe.  

appear, however, i n  over 30 mass number decay chains and therefore  

s ign i f i can t ly  a f fec t  t he  general  f i s s ion  product disposi t ion.  

among these f i s s ion  products i s  135Xe with i t s  large thermal neutron 

They 

Notable 

*The amounts and concentration p r o f i l e s  of salt seekers ins ide  t h e  
graphite have been correlated w i t h  theory qui te  well i n  R e f .  ( 9 )  f o r  
the case where the  noble gas precursor i s  shor t  l ived .  

cj 
t 

b 

. 
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1 

a 

s 

6 cross section of 3 x 10 barns. 

has gone i n t o  quant i ta t ively understanding noble gas migration i n  t h e  

MSRX. This work has been reported in  t h e  semiannual reports  and other 

documents. The noble gases, par t icu lar ly  xenon, a re  very insoluble i n  
f u e l  salt ; therefore ,  they a re  readi ly  transported i n t o  any avai lable  

Because of 135Xe, a great deal  of work 

gas phase such as t h e  c i rcu la t ing  bubbles, the gas space in  t h e  pump 

bowl, and t h e  pores of t h e  moderator graphite.  

The t h i r d  group of f i ss ion  products i s  the  so-called "noble metals." 

They are  reduced by UF3 i n  the  f u e l  salt and ex i s t  i n  the reactor  

environment in t h e  metal l ic  state,  hence t h e  name. Examples are Mo, Ru, 

Ag, Sb, Te and sometimes Nb. If the  fue l  salt  i s  i n  a well  reduced 

state,  then t h e  Nb e x i s t s  as a noble metal, but i f  t h e  fue l  i s  more oxi- 

dized, it e x i s t s  as a salt seeker. Noble m e t a l s  have been found through- 

out t h e  e n t i r e  reactor  fue l  salt  loop. 

quant i t ies  i n  fue l  salt  and gas phase samples from the  pump bowl. 

have been found i n  la rge  quant i t ies  on the  Hastelloy-N and graphite-core 

surveil lance samples, and on t h e  primary heat exchanger tube surfaces and 

loop piping surfaces.  

off-gas system. 

metals ih these depositories,  within the  framework of mass t r ans fe r  

theory,  and t r y  t o  develop a unif ied model of noble metal migration i n  t h e  

MSRE . 

They have been found i n  la rge  

They 

They have been found at various locations i n  the 

I n  t h i s  report we w i l l  look quant i ta t ively at t h e  noble 

3.2 Fission Product Disposition Measurements 

3.2.1 Fuel Sa l t  and G a s  Phase Samples 

Three types of capsules were used t o  obtain fue l  salt  samples from 

t h e  MSRE pump bowl sample s t a t ion ,  and these are shown i n  Figures.2.6 and 
2.7. 
those i l l u s t r a t e d  were used on a routine bas i s .  The l a d l e  capsule i s  t h e  

simplest and w a s  t h e  f irst  used f o r  sampling fuel sal t .  This capsule i s  

i l l u s t r a t e d  in  Figure 2.6 in  t h e  process of taking a salt sample. It i s  

simply a s m a l l  container with open por t s  on the  s ide  t o  allow s a l t  t o  

enter.  During t h e  course of f'uel s a l t  sampling from t h e  reactor ,  it w a s  

found t h a t  a m i s t  of sa l t ,  which was heavily contaminated with noble 

metals, ex is ted  over t h e  salt pool. Presumably t h i s  m i s t  w a s  generated by 

Numerous other sampling devices were used fo r  spec ia l  tests but only 
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t he  mechanical action of t h e  spray impinging on the  sal t  surface and by 

burst ing bubbles. 

t h e  m i s t  adhered t o  t h e  capsule and grossly contaminated the  sample. 

When the  ladles were lowered t o  take a salt  sample, 

Freeze valve" capsules , which had previously been developed f o r  taking 11 

gas samples, were therefore  used t o  take salt samples i n  the  hope of 

a l l ev ia t ing  t h i s  problem. 

capsules are shown i n  Figure 2.7a. Each capsule contains a vacuum which 

is  held by a frozen salt  seal around the  cap i l l a ry  entrance tube.  

salt  seal i s  designed t o  m e l t  after a delay t i m e  long enough t o  allow t h e  

capsule t o  be completely submerged i n  f u e l  salt  before it opens. 

Two modifications of these freeze valve 

The 

The 

ins ide  surface of t he  capsule is therefore  not contaminated with t h e  salt 

m i s t  when taking a f u e l  salt sample. Freeze valve capsules f o r  tak ing  

salt samples were used first i n  run 14. The noble = t a l  concentration 

measured i n  salt from these capsules w a s  generally about two orders of 

magnitude less than i n  salt  from the  ladle capsules. 

modifications of t h e  freeze valve capsule, t he  sea l ing  sal t  remains ins ide  

the capsule, and puddles over t h e  cap i l l a ry  nozzle. When taking gas phase 

samples, t h e  capsule i s  lowered i n t o  the  pump bowl u n t i l  t he  valve thaws 

and t h e  sanrple i s  taken, then it i s  withdrawn t o  a cooler region so the  

salt puddle may again freeze and contain t h e  sample. These freeze valve 

capsules d id  not  exclude mist and scum on t h e  salt  surface from adhering 

t o  the outside surfaces of t h e  capsule. 

outside surfaces w e r e  always w e l l  leached t o  remove t h i s  material. 

t he l e s s ,  the  question of t r a n s f e r  of contamination from the outside sur- 

face t o  the ins ide  materials during chemical processing always remained. 

This worry l ed  t o  the development of t h e  double walled, freeze valve 

capsule shown i n  Figure 2.7%. It i s  bas ica l ly  a freeze valve capsule but 

it is doubly contained, and can be used f o r  salt or gas phase sampling. 

During processing, t h e  nozzle and t o p  of t h e  outer  container are cut 

through. 

the outer  container and i s  free from m i s t  and scum. There was  l i t t l e  

difference i n  the  measured noble m e t a l  concentration between samples taken 

with freeze valve and with double-walled freeze valve capsules. 

Note that  i n  both 

During capsule processing the  

Never- 

The inner capsule containing t h e  sample then falls  away from 
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These t h r e e  kinds of capsules were rout inely used fo r  taking f u e l  

s a l t  and gas phase samples. 

repor t ,  only da ta  f romthe  freeze valve and double-walled freeze valve 

capsules w i l l  be used, and they w i l l  be used with equal weight. Ladle 

samples w i l l  not be used because of the  problem of m i s t  and scum contami- 

nation. On a l l  p l o t s  t h a t  follow, the  data points  w i l l  specify whether 

the capsule was a f reeze valve or a double-walled freeze valve type. 

Another point t o  note i s  the difference in  volume of t h e  two capsule 

types.  

s a l t ,  but t h e  double-walled capsule when f u l l  holds only 14 t o  15 grams. 

During the sampling procedure, a purge of helium was maintained down the  

sample t ransport  pipe. 

samples but could be a s ign i f icant  parameter fo r  t he  gas samples. 

helium purge var ied from 575 t o  75 standard cm3/min depending on t h e  

In t he  ana ly t ica l  work presented i n  t h i s  

The freeze valve capsule when full holds 50 t o  60 grams of f u e l  

This should make l i t t l e  difference t o  the s a l t  

The 

sample. A l l  samples were taken with the higher purge r a t e  before sample 

19-16; a f t e r  t h a t  the  s a l t  samples had the  higher purge r a t e  and t h e  gas 

samples t h e  lower purge r a t e .  

Only four f reeze valve samples of f u e l  s a l t  were taken during t h e  

235U runs (during run 1 4 )  but many freeze valve and double-walled freeze 

valve samples were taken during the  233U runs. 
fore  be discussed most extensively. Many l ad le  samples of s a l t  were taken 

during t h e  233U runs because they continued t o  give good r e s u l t s  on s a l t -  

seeking f i s s ion  products. 

radiochemically. 

cat ion and the amount of the  isotopes present.  

3.2.2 

The 233U runs w i l l  there- 

Both the s a l t  and gas samples were analyzed 

This technique was used t o  determine both t h e  i d e n t i f i -  

Gamma Spectrometry of the Primary Heat Exchanger 

The amounts of cer ta in  noble metal f iss im products deposited on the  

primary heat exchanger tube surfaces were measured by gamma ray spec- 

trometry. The technique consisted of looking a t  a spot on the heat ex- 

changer with a collimated detector  and measuring the  gamma energy spectrum 

emitted *om t h a t  spot .  

measure quant i ta t ive ly  the f i s s i o n  products present.  

The first gamma scans were made a f t e r  run 1 4  ( last  235U run) and were, 

The r e su l t i ng  spectra  were used t o  ident i fy  and 

t o  an ex ten t ,  exploratory in  nature;  i .e.,  an attempt was made t o  see i f  
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iJ spec i f ic  f i s s i o n  product information could be extracted quant i ta t ive ly  

from t h e  tremendous amount 

operating reac tor  system. Brief ly ,  t he  equipment consisted of a highly 

of background gamma rad ia t ion  emitted by an - r  

collimated l i thium-drifted germanium diode detector  t h a t  w a s  coupled t o  a 

a 400 channel analyzer t o  determine the  energy spectra .  

taken with the  reac tor  shut down and e i t h e r  drained or f i l l e d  with f lush  

A l l  scans were 

salt. The equipment was  mounted on a portable  maintenance sh ie ld ,  so 
gamma scgns could be taken at many locat ions on t h e  heat exchanger. A l l  

together about 100 spectra  were determined. Most of these were from the  

heat  exchanger but a few were from other  components. The equipment w a s  

ca l ibra ted  so t h a t  t h e  measured count rate could be reduced t o  atoms of 

f i s s i o n  product per un i t  area of tube surface.  

by hand and w a s  qu i te  tedious.  It w a s  poss ib le  t o  i s o l a t e  quant i ta t ive ly  

four noble metals from a t y p i c a l  spectrum (99Mo, lo3Ru, 132Te, and 95Nb). 
More details of the equipment and procedures can be obtained from R e f .  lo. 

A t  t he  end of t h e  experiment it was  concluded t h a t  t h e  qua l i ty  of  t he  

data  and i t s  po ten t i a l  appl icat ions were su f f i c i en t ly  promising t o  w a r r a n t  

improving t h e  system and repeating the  experiments during later runs. 

Data processing was  done 

A f t e r  considerable equipment and ca l ibra t ion  procedure improvement, - 
t he  gamma spectrometry measurements w e r e  repeated after run 19 (233U). 
improved G e ( L i )  detector  and a 4096 channel analyzer were used. 

processing was  done with a computer program developed f o r  t h i s  purpose. 

Precise alignment w a s  achieved by use of a l a s e r  beam and surveyor's 

transit. 

taken with t h e  reac tor  at d i f fe ren t  power l eve l s  (a f e w  w a t t s  t o  full 
power). Another 400 spectra  were taken f o r  ca l ibra t ion  purposes. Details 

of t h e  equipment, ca l ibra t ion  procedures, and data  analysis  can be 

obtained from R e f .  11. 

components besides the  heat exchanger, such as t h e  pump bowl, off-gas 

l h e ,  and main loop piping. The pr inc ipa l  i n t en t  of t h e  experiment, how- 

ever ,  was  t o  measure f i s s ion  product deposition quant i ta t ive ly  i n  t h e  

primary heat exchanger. This w a s  t h e  only component f o r  which an - 
absolute ca l ibra t ion  of t h e  detector  w a s  made. 

t h e  only data  t h a t  w i l l  be analyzed i n  t h i s  repor t .  

of the primary heat  exchanger were obtained a f t e r  run 19, although some 

An 

Data 

Altogether some 1000 spec t ra  were measured, many of which were 

Gamma spec t ra  were obtained from other  fuel loop 

Therefore, these  are 
W 

The pr inc ipa l  spectra  

I 
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preliminary data were taken arter run 18. 
reac tor  shut down and drained. Altogether, quant i ta t ive information w a s  

obtained f o r  10 noble m e t a l  isotopes from these data. Figure 3.1 is  

t y p i c a l  of t he  kind of data  obtained from t h i s  experiment. 

amount of 132Te per  square centimeter of tube surface p lo t ted  against  a 

longi tudinal  representation of t he  heat exchanger. 

concentration i s  from 0.3 x 10l2 t o  0.75 x 10l2 disintegrations/min-cm2. 

The higher value seems t o  be associated with the  ba f f l e  p l a t e s  and t h e i r  

windows, whereas the  lower value i s  associated with the  crossflow pa r t  of 

t h e  heat exchanger. In t h i s  report  t he  lower value w a s  considered t o  be 

most representative of t he  heat exchanger and, as an example, 0.3 x 10l2 
disintegrations/min-Cm2 w a s  chosen f o r  132Te. The qua l i ty  of data  from 

t h e  gamma scans after run 1 4  were not nearly as good as shown i n  Figure 

3.1, and a so r t  of weighted average of a l l  t he  data w a s  used. 

The data  were taken with t h e  

It shows the  

The t o t a l  range i n  

3.2.3 Core Surveillance Samples 

The core surveil lance specimens were b r i e f l y  described (see Sect. 2.2) 

and i l l u s t r a t e d  (see Figure 2.4) e a r l i e r .  

w a s  shut down and drained, a l l  graphite and Hastelloy-N specimens were 

removed and t he  amounts of  f i ss ion  products deposited on t h e  surfaces and 

t h e  i n t e r i o r  of some were measured. Radiochemical techniques were used 

t o  determine the  iden t i ty  and amount o f  t h e  isotopes present.  Unfortunate- 

ly ,  the  f l u i d  dynamic conditions i n  t h e  surveil lance specimen holder a r e  

not well known because the f l o w  passages are so complicated. These fluid 

dynamic d i f f i c u l t i e s  are discussed i n  d e t a i l  i n  Appendix B where w e  

estimate the  mass t r ans fe r  coef f ic ien t ,  

survei l lance specimens feature  inside corners, outside corners, f l u id  

entrance and e x i t  regions, and possible stagnation areas. Superimposed 

on these  i s  a flow t h a t  i s  only marginally turbulent  ( R e  2 3000). 

d i f f i c u l t i e s  were a r e s u l t  of t he  many d i f f e ren t  kinds and geometries 

of specimens t h a t  had t o  be incorporated i n t o  a very confined space. The 

measured noble metal deposition data on graphite t h a t  w i l l  be analyzed i n  
t h i s  report  came from t h e  surfaces exposed t o  f u e l  sa l t ,  although some 

Periodical ly ,  when t h e  reactor  

Brief ly ,  l e t  us j u s t  say t h a t  t h e  

These 

noble metals were a l so  found on the  inside surfaces t h a t  presumably w e r e  
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not exposed t o  salt .  

Hastelloy N came from the dosimetry wires. Noble m e t a l  deposition measure- 

The measured noble metal deposition data  on 

ments were a l s o  made on the perforated Hastelloy N cage but these w i l l  not 

be analyzed because of the almost impossible job of estimating the m a s s  

t r ans fe r  coef f ic ien t .  

both t h e  graphite and t h e  Hastelloy N i s  estimated t o  be about 0.25 f t / h r .  

"- 

In Appendix B ,  the  mass t r ans fe r  coeff ic ient  t o  

There i s  a s igni f icant  uncertainty associated with t h i s  value f o r  t h e  

reasons described above. The mass t r ans fe r  coeff ic ient  from the  fuel salt  

t o  the  heat  exchanger surfaces i s  a much bet ter  known number than t o  the  

surveil lance specimens. Figures 3.2 and 3.3 show typ ica l  data obtained 

from these  specimens. 

3.3 The Difference Between t h e  235U and 233U Runs 

Following run 14 t h e  235U fuel was removed from the  carrier salt (and 

f lush  sa l t )  and the  reactor  was refueled with 233U. 
of t h e  salt was done at the  MSRE s i te ,  and the  process i s  discussed in  

d e t a i l  i n  R e f .  12 .  The basic  process w a s  f luorinat ion of t h e  fue l  salt 

ivld removal of the uranium as a v o l a t i l e  f luoride.  The corrosion rate on 

t h e  process tank during processing w a s  high and has been estimated t o  be 

about 0 .1  mil /hr .  

Chemical processing 

The tank w a s  constructed of Hastelloy N and t h e  corro- 

sion products were NiF2, FeF2, and CrF2. Following the f luor ina t ion  s t ep ,  

it w a s  therefore  necessary t o  remove the  corrosion products from t h e  salt .  

This w a s  done by reduction with hydrogen and zirconium powder and subse- 

quent f i l t r a t i o n .  

The c a r r i e r  sa l t  w a s  then returned t o  the reactor  system and loaded w i t h  

233U. 

physics experiments w i t h  t h i s  new fue l .  

Removal of 235U from the  sal t  w a s  e s sen t i a l ly  complete. 

R u n  15, t he  f irst  233U run, was concerned w i t h  the  zero-power 

During run 15 a s igni f icant  change i n  operating charac te r i s t ics  of 

t he  reactor  occurred and pers is ted un t i l  t h e  reac tor  was permanently shut 

dawn. 

t h e  fuel loop was determined t o  be between 0.0002 and 0.00045 (see R e f .  5 )  , 
and t h e  overflow rate from t h e  pump bowl t o  t he  overflow tank ranged from 

0.4 t o  1.5 lb/hr ,  with e s sen t l a l ly  no overflow excursions following 

beryllium additions.  

primarily t o  reduce some UFI, t o  UF3 and control  t h e  oxidation state of t h e  

fuel. 

During t h e  235U runs, the  volume fract ion of c i rcu la t ing  bubbles i n  

Beryllium was per iodical ly  added t o  t h e  fuel sal t ,  

During the 233U runs t h e  volume f rac t ion  of c i rcu la t ing  bubbles 
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i n  t he  f u e l  loop was 0.005 t o  0.006, and the  overflow rate ranged from 4 
t o  10 lb /h r  with excursions up t o  70 lb /hr  following a beryllium addition. 

The mean c i rcu la t ing  void Traction had gone up by a f ac to r  of about 20 

and the  overflow rate had gone up by a f ac to r  of about 10 i n  t h e  233U runs 

as compared t o  the 235U runs. 

of these operating var iables  and others .  

remained nominally the  same for  both fue l s ,  although t h e  uranium concentray 

t i o n  w a s  reduced from 0.9 mole percent t o  about 0.2 mole percent primarily 

because the  233U was not d i lu ted  with 238U. 
of salt densi ty  by 3 t o  4 percent. 

Reference 4 provides a detai led discussion 

The composition of t h e  f u e l  salt 

This resu l ted  i n  a lowering 

Other physical  propert ies  (v iscos i ty ,  

surface tension,  e t c . )  might be expected t o  change an equivalently s m a l l  

amount. 

the  overflow rate are cer ta in ly  functions of these var iables .  

opinion, t h e  change i n  reac tor  operat ional  parameters i s  much too  great  t o  

be explained by such s m a l l  changes i n  physical  p roper t ies .  

t he re  i s  evidence t h a t  t h e  bubble ingestion phenomenon w a s  near  a thresh- 

old region. 

the  pump speed w a s  changed a s m a l l  amount." It has been speculated t h a t  

t he  s m a l l  changes i n  physical  propert ies  were coupled i n  some way t o  the  

ingestion threshold t o  y i e l d  the  high void f rac t ions  during the 233U 
runs. 

t i on ,  however, I bel ieve that it accounts f o r  only a s m a l l  amount of t h e  

increase.  

The rate of bubble in jec t ion  from t h e  pump bowl t o  t h e  loop, and 

In my 

Actually,  

This was indicated by a s teep  change i n  void f rac t ion  when 

( 4 )  T h i s  suggestion may account f o r  par t  of the increased void frac-  

The question then i s  - Why the  difference i n  t h e  above parameters 

when fueled w i t h  235U and 233U. 
of t h e  233U runs. 
i n  t he  f u e l  loop f o r  about 40 h r .  There was no abnormal behavior during 

t h i s  period. 

were consis tent  with what had been expected from past  operating h is tory .  

The f lu sh  salt  w a s  drained and t h e  fuel s a l t  w a s  added. Circulation w a s  

A clue is  given during the  i n i t i a l  h i s to ry  

P r io r  t o  the  start  of run 15, f lush salt was  c i r cu la t ed  

Both t h e  c i r cu la t ing  void f rac t ion  and t h e  overflow rate 

started and a g a h  no abnormal behavior w a s  noted. A f t e r  about 74 hr  of 

*The fuel pump was  pawered by a var iable  frequency un i t  for a period 
of time during the 233U runs t o  inves t iga te  the e f f e c t s  of c i r cu la t ing  .I 

~ 

Ld 
voids on 35Xe behavior. 
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c i rcu la t ion ,  a beryllium rod w a s  added fo r  the  purpose of reducing pa r t  

of t h e  U4+ t o  U3+. 
began t o  rise indicat ing increased bubble ingestion i n t o  t h e  fuel loop. 

When it peaked out ,  the  c i rcu la t ing  void f rac t ion  w a s  about 0.5 percent. 

A short  t i m e  l a t e r  t he  overflow r a t e  apparently went up t o  a higher than 

normal value (% 4 l b /h r )  . 
data logger w a s  not  f u l l y  operable during t h i s  period. 

rod w a s  removed after 1 2  h r  of exposure t o  salt , 10.1 grams of beryllium 

had been dissolved. The c i rcu la t ing  void f rac t ion  and overflow rate 

remained high for  10 h r  of circulation u n t i l  the  fuel salt w a s  drained 

i n t o  t h e  dump tanks.  The above occurred before the reactor  went c r i t i c a l  

w i t h  233U. 

About 2 h r  la ter ,  t he  salt l e v e l  i n  t h e  pump bowl 

Detailed records are not avai lable  because t h e  

When the beryllium 

A suggested explanation f o r  t h i s  behavior i s  as follows. During t h e  

ear ly  operational h i s tory  of run 15 ,  the  f u e l  salt was i n  a more oxidized 

state than expected. (I3) The d i r ec t  evidence t h a t  these f luorides  were 

there and t h a t  t he  fue l  oxidized i s  as follows: 

(1) 

( 2 )  

The corrosion r a t e  on t h e  fuel loop w a s  high during run 15 .  
During the 235U runs, 95Nb behaved as a noble metal. During 

the  i n i t i a l  233U runs , it behaved as a salt  seeking f i s s ion  product , indi- 

eating the f u e l  w a s  much more oxidized. (14) 

(3) When the  beryllium capsule was removed from the  sa l t ,  a th ick  

crust  w a s  found on t h e  n icke l  cage enclosing t h e  capsule. 

predominantly salt,  but t h e  residue after extract ing the  salt  w a s  pre- 

dominantly iron w i t h  s m a l l  amounts of nickel  and chromium. ('3) Similar 

c rus t s  w e r e  found on other beryllium capsules added during run 15.  The 

perforated capsule f o r  beryllium additions during t h e  235U runs usually 

came out of the  pump bowl r e l a t ive ly  clean and did not have i ron deposits.  

The crust  w a s  

The beryllium then,  rather than reducing the  uranium in t h e  fuel, 

apparently reduced t h e  i ron and n icke l  corrosion product f luorides  t o  t h e  

meta l l ic  state and they formed a scum on t h e  surface of t h e  f u e l  salt i n  

the  pump bowl. 

possesses many propert ies  of insoluble surface act ive agents. One 
cha rac t e r i s t i c  of such surface ac t ive  materials is  t h a t  they enhance 

f ro th  s t a b i l i t y ,  and an e f f ec t  would be produced i n  the  pump bowl much 

l i k e  i n  a f ro th  f loa ta t ion  chamber. 

A hypothesis of t h i s  analysis i s  tha t  the f loa t ing  scum 

It was  suggested earlier t h a t  a 
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mechanism involving heavy f ro th  must be resorted t o  t o  explain t h e  high 

overflow ra t e s  experienced during the  233U runs. 
face ac t ive  agents i s  i n  t h e  s i ze  of t h e  bubbles generated. 

work with bubble generating devices (15'16) in  t he  form of a ventur i  or j e t  

pump has shown t h a t  considerably smaller bubbles a re  generated when a 

surface act ive mater ia l  i s  present than when absent. 

whether they a re  ae tua l ly  generated smaller or whether t h e  presence of 

surface act ive agents prevents t h e i r  coalescence in  the  immediate v i c i n i t y  

of t h e i r  generation. 

smaller. 

corrosion products acting as surface ac t ive  mater ia ls  i n  the pump bowl, 

more s m a l l  bubbles were generated during t h e  233U runs than the  235U 
runs. 

Another e f f e c t  of sur- 

Development 

It i s  unclear 

The r e s u l t ,  however, i s  t h a t  they a re  considerably 

Now t o  extrapolate t o  the  MSRE, one would say t h a t  with reduced 

The smaller t he  bubbles, the b e t t e r  t h e i r  chance of being swept i n t o  

This then would be a mechanistic hy-pothe- 

sis t o  explain t h e  higher c i rcu la t ing  void f rac t ions  and pump bowl overflow 

ra t e s  during the  233U runs. 

act ive materials exis ted i n  the  pump bowl and f u e l  loop f o r  a l l  t h e  233U 
runs. 

f a i r l y  clean, t h e  beryllium addition capsules continued t o  show deposits 

of Fe and N i  i n  varying amounts during t h e  remainder of t he  233U runs. 

' the f u e l  loop by the  under flow. 

O f  course, it must be shown that surface 

Although regular  s a l t  sampling capsules came out of t h e  reac tor  

In addi t ion,  magnets were per iodical ly  lowered i n t o  t h e  pump bowl i n  an 

e f f o r t  t o  recover f r ee  meta l l ic  p a r t i c l e s .  

materials although the  quant i t ies  were small ,  l e s s  than a gram; however, 

it doesn't take a la rge  amount of surface act ive materials t o  have a 

dramatic e f f e c t  on surface behavior. 

They did recover these 

The physical s t a t e  or s t a b i l i t y  of the  f ro th  i n  the  pump bowl w i l l  

be re fer red  t o  several  times i n  t h i s  repor t ,  pa r t i cu la r ly  with regard t o  

the differences i n  i t s  s t a t e  between the  235U and 233U runs. 

usage a f ro th  or  foam, such as the  foam on a g lass  of beer, often implies 

a high degree o f  s t a b i l i t y .  

of a bubble i n  a head of beer i s  orders of magnitude grea te r  than in  

pure water. I do not intend t o  suggest an increase i n  bubble s t a b i l i t y  

i n  the  pump bowl anything l i k e  t h i s ,  ra ther  t h a t  t h e  increase i n  bubble 

s t a b i l i t y  between the  235U and 233U runs was r e l a t ive ly  minor. 

see i f  we can ex t rac t  something meaningful regarding bubble l i fe t imes  i n  

In common 

In terms of bubble l i f e t ime ,  t he  mean l i f e  

Let us 

* I  
r 
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t he  pump bowl. 

bubble destruct ion r a t e .  

r a t e  of gas carryunder from t h e  xenon s t r ippe r  sal t  spray. One might 

expect that the carryunder w a s  more or l e s s  constant f o r  t h e  235W and 

233U runs; at l e a s t  we w i l l  assume t h i s  t o  be the case. We w i l l .  a l so  

assume t h a t  t he  bubble burst ing r a t e  i s  proportional t o  the  t o t a l  volume 

of gas bubbles i n  the  salt .  This neglects many var iables  which a re  

ce r t a in ly  important, such as bubble s i z e ,  depth of f ro th ,  salt  drainage 

from t h e  bubble swarm, e t c . ,  nevertheless,  i n  t he  i n t e r e s t s  of  continuing 

with t h i s  discussion, the  assumption probably i s n ' t  too  bad. 

t r u e  then at steady s t a t e ,  we have 

A t  steady s t a t e  the  bubble generation r a t e  must equal t he  

The bubble generation r a t e  w a s  determined by t h e  

I f  it i s  

Bubble Generation Rate = XV 

where V i s  the t o t a l  volume of gas entrained and X i s  the  "bursting 

constant" fo r  t he  bubbles. The bubble half  l i f e  would be 0.693/~. Note 

t h a t  within these assumptions at a constant bubble generation r a t e ,  if the 

bubble ha l f  l i f e  i s  doubled, then the  t o t a l  volume of gas entrained by 

the salt would a l s o  be doubled. The f ro th  height i n  the  pump bowl would 

then increase a corresponding amount. A mechanism l i k e  t h i s  , w i t h  an 

increase i n  bubble l i fe t ime of t h i s  magnitude, could eas i ly  account f o r  

the  higher overflow r a t e s  experienced during the 233U runs. Note par- 

t i c u l a r l y  tha t  doubling or even t r i p l i n g  bubble l i fe t imes  represents a 

ra ther  mild increase i n  bubble s t a b i l i t y  compared t o  more common notions. 

This, then i s  a description of t he  differences i n  operating char- 

a c t e r i s t i c s  between the  235U and 233U runs i n  the MSRE, and a suggested 

hypothesis t o  explain t h e  differences.  

t h a t  noble metals and reduced corrosion products w i l l  adhere t o  l iquid- 

gas in te r faces ,  w i l l  be re fer red  t o  many times i n  t he  following sections.  

The e s sen t i a l s  of t h i s  hypothesis, 

4. ANALYTICAL MODEL 

4 .1  Physical Basis of Model 

For reasons already discussed, and for others  which w i l l  become 

apparent in  the  sect ion on N3SULTS FROM THE MSRE, one might expect t h a t  

the t ransport  of noble metals from t h e  fuel s a l t  t o  the various surfaces 
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where they deposit i s  controlled by the laws of mass t r ans fe r .  

review b r i e f ly  the behavior of noble metal f i s s ion  products and f u e l  

salt  i n  the  MSRE as follows: 

Let us 

1. Noble metals a re  born as ions from f i s s ion  and decay of t h e i r  

They are  homogeneously dis- precursor, but become atoms very quickly. 

persed in  the  sal t .  

2. Noble metals a re  unstable i n  f u e l  sa l t ;  i . e .  , they a re  present 

i n  t he  reduced metal l ic  s t a t e  and a re  qui te  insoluble. 

be unwet by salt .  

range of 90-150". 

They may even 

Massive metal objects display contact angles in  the 
(17) 

3. Noble metals deposit on Hastelloy N and graphite surfaces,  and 

la rge  amounts a re  found there .  

4. They a l s o  deposit on liquid-gas in te r faces ,  and we i n f e r  tha t  

they display some of t he  propert ies  of surface ac t ive  agents. This con- 

cept has been used t o  explain the  differences i n  235U and 233U operation 

of the  MSRE, and w i l l  be used t o  explain many of t he  r e s u l t s  observed 

l a t e r  . 
5. Fuel salt i s  known t o  behave as a conventional Newtonian f lu id .  

For instance,  the primary heat exchanger was designed using conventional 

heat t r a n s f e r  correlat ions and t h e  measured overa l l  heat  t r a n s f e r  coef- 

f i c i e n t  w a s  i n  good agreement with the  design value. One would expect 

the  same degree of success i n  estimating mass t r a n s f e r  coef f ic ien ts  since 

t h e  t ransport  phenomenon i s  the  same i n  both cases. One must always be 

wary, of course, because sometimes physical and chemical phenomena come 

i n t o  play tha t  complicate the  simple approach. 

The above points cons t i tu te  t h e  e s sen t i a l  requirements f o r  a mater ia l  

t o  t ransport  through t h e  f l u i d  boundary layer  and deposit on t h e  surfaces 

according t o  the  l a w s  of mass t r ans fe r .  

reactor  systems has sham t h a t ,  i f  t he  chemistry of t h e  f i s s ion  products 

permits-, they w i l l  be transported according t o  these l a w s .  

example, Refs. 18 through 21. 

t he  noble metal migration question i n  the  MSRE within the  framework of 

mass t r a n s f e r  theory i n  i t s  simplest form and l e t  t h e  r e s u l t s  speak 

f o r  themselves. 

Development work from other 

See, f o r  

It would therefore  seem f r u i t f u l  t o  a t tack  . 
. 
I 
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4.2 Analytical Model 

F i r s t ,  we must wri te  a r a t e  balance on the  noble metals i n  f u e l  salt  

where they are born. The conditions of t h i s  rate balance are  as follows. 

Note from t h e  generalized be ta  decay chain from Sect. 3.1 t h a t  noble metals 

appear in  groups and we have a s i tua t ion  where noble metals can decay 

i n t o  noble m e t a l s .  Note a l so  from the generalized decay scheme t h a t  each 

noble metal grouping may start  o f f  with a salt seeking precursor. 

ana ly t ica l  model w i l l  therefore  consider the las t  salt  seeking precursor 

of t he  noble metal chain. 

precursor i s  9 5 Z r  with a ha l f  l i f e  of 65 days. 

be f o r  t h e  unsteady state.  This i s  because the MSRE, being an experimental 

reactor ,  had a qui te  e r r a t i c  power h is tory .  

l i ved  isotopes reach steady state. The model w i l l  consider the e n t i r e  

fuel loop t o  be a "we1.1 s t i r r e d  pot." 

t o  be adequate because the  fuel c i r c u i t  t i m e  around the  loop i s  about 

25 seconds and t h e  isotopes w e  w i l l  be dealing with have ha l f  l i v e s  rang- 

ing from hours t o  years.  

assumption would be t o  compare t h e  f i e 1  c i r c u i t  t i m e  t o  the computed 

residence t i m e  of a noble m e t a l  atom in  salt before it deposits on a 

surface.  In Appendix B, it i s  shown t h a t  t he  longest residence t i m e  

(expressed as t h e  half  l i f e  of noble m e t a l s  i n  fue l  s a l t )  i s  twice t h e  

loop c i r c u i t  time. Lastly,  it i s  assumed tha t  a l l  noble metals migrate 

The 

We must do t h i s  primarily because of 95Nb whose 

The ana ly t ica l  model must 

Seldom did any of t h e  longer 

One might expect t h i s  assumption 

A b e t t e r  indication of t he  adequacy of t h i s  

independently of each other ,  even when of t he  same chemical species.  
Consistent with a l l  t he  considerations discussed above, we can now 

write a r a t e  balance on the  noble metals associated with f u e l  salt  where 

they are born. The equation i n  words i s  as follows where the un i t s  of 

each term is  atoms/time. 

dCS V - = generation r a t e  from f i ss ion  + generation rate from 
dt decay of precursor 

- decay r a t e  - deposition r a t e  on graphite 

- deposition r a t e  on heat exchanger (1) 
- deposition rate on r e s t  of fue l  loop 

- deposition r a t e  on liquid-gas in te r faces  (bubbles). 
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See Appendix A fo r  t he  Nomenclature. 

t ions  of t he  reactor  power h is tory  and y ie lds  of t h e  spec i f ic  isotopes 

involved. 

spec i f ic  noble m e t a l  and i ts  decay constant. A l l  t he  other  terms are 

deposition r a t e s  and are  functions of t he  surface area, mass t r ans fe r  

coeff ic ient  and t h e  concentration poten t ia l .  

graphite i n  t h e  core and on t h e  heat exchanger have been l i s t e d  separately.  

The rest of the  loop i s  lumped i n t o  one term. 

a l so  been l i s t e d  as a separate term because of i t s  importance. Each term 

w i l l  now be evaluated separately and t h e  equation w i l l  be integrated over 

The two generation terms are  func- 

The decay rate i s  a function of t h e  concentration of each 

The deposition r a t e s  on t h e  

Deposition on bubbles has 

. t i m e .  

4.2.1 Generation from Fission 

The generation rate d i rec t  from f i s s ion  i s  simply as follows: 

Generation from f i s s i o n  = yP (2 1 

4.2.2 Generation from Decay of Precursor 

A rate balance on t h e  last soluble precursor before decaying i n t o  

a noble metal w i l l  be 

Integrat ing and evaluating at t h e  boundary condition 

cPS = c Ps at t = 0 
0 

we get 

The generation rate from decay of t h e  precursor will be 

P PS Generation from decay of presursor = X VC . 
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4.2.3 Decay Rate 

The decay r a t e  of each noble metal isotope i s  simply as follows: 

- - .  (7) S Decay r a t e  = XVC 

4.2.4 Deposition Rate on Heat Exchanger 

Written i n  t h e  framework of mass t r ans fe r  theory, t he  deposition rate 

of noble metals on t h e  heat exchanger surfaces can be expressed as 

follows : 

I 

(CS - CSi) (8)  hhe Deposition rate on heat exchanger = 

s i  A t  t h i s  point it w i l l  be necessary t o  make an assumption concerning C 

( the concentration of noble metal in  t h e  fuel sal t  at t h e  f luid-sol id  

in t e r f ace ) .  

and graphi te)  behave as an i n f i n i t e  s ink;  i .e . ,  i f  a noble metal atom 

migrates through t h e  f l u i d  boundary layer  and contacts t he  surface,  it 

w i l l  s t i c k  there  forever. This i s ,  of course, one of t h e  unknowns i n  

t h i s  analysis.  The r e s u l t  of t h i s  assumption i s  t h a t  Csi e f fec t ive ly  

becomes zero, and the  equation reduces t o  

We w i l l  assume tha t  a l l  so l id  surfaces involved (Hastelloy N 

(9 1 he he cs Deposition rate on heat exchanger = h A 

4.2.5 Deposition Rate on Graphite 

By reasoning s i m i l a r  t o  t h a t  above we can a r r ive  at t h e  equation f o r  
deposition of noble metals on the  core graphite as follows: 

gra  gra  Deposition rate on graphite = h A Cs 

W e  have again assumed a s t ick ing  f rac t ion  of 1.0. 

4.2.6 Deposition Rate on Rest of Fuel Loop 

Again by reasoning s i m i l a r  t o  t h a t  above, we arr ive at t h e  equation 

f o r  the  deposition of noble metals on t h e  rest of t h e  f u e l  loop (a l l  

Hastelloy N). 

rest of fuel loop s Deposition r a t e  on r e s t  of fuel loop = c ( h A )  c (11) 
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4.2.7 Deposition Rate on Liquid-Gas Interfaces  

As noted before,  there  are small bubbles c i rcu la t ing  with t h e  fue l  

s a l t .  

mass t r ans fe r  coefficient i s  higher than the  same product f o r  a l l  t h e  r e s t  

of t h e  s o l i d  loop surfaces combined. 

bubble i s  low, t h e i r  e f f ec t s  w i l l  s t i l l  be qui te  strong. 

t ha t  noble metals deposit on liquid-gas interfaces  i n  accordance with the  

mass t r ans fe r  theory and tha t  t he  s t ick ing  f rac t ion  i s  1 .0 ,  w e  again 

Their amount i s  small but the  product of t h e i r  surface area and 

Even i f  t he  s t ick ing  f rac t ion  t o  a 

If we assume 

a r r ive  at a similar equation f o r  t he  r a t e  of migration t o  bubbles. 
, , 
, Deposition r a t e  on liquid-gas interfaces  (bubbles) = h bubAbubCs (12) 

Later w e  w i l l  deduce t h a t  t he  effect ive s t ick ing  f rac t ion  t o  bubbles i s  
less than unity.  

4.2.8 Equation f o r  Cs 

Now the  individual generation rate terms and decay and deposition 

r a t e  terms are subs t i tu ted  i n t o  t h e  o r ig ina l  rate balance around t h e  f u e l  

sa l t ;  Eq. (l), and the  equation i s  integrated.  

I 
! 

I 
, is  evaluated a t  the boundary condition 

The constant of integrat ion 
I 

(13) S cS = c0 at  t = o 
S This w i l l  y i e ld  t h e  equation for t he  concentration ( C  ) of a noble metal 

i n  the  fue l  sa l t  a t  any time ( t) .  This equation i s  as follows: 

xp cpos - ypP/v)] -xt 
- (  e 

x - AP 

where 
rest Of loop bub Abub 

(15) 
h gra  gra  hhe 1 (hA) 

V 
+ 

V 
+ 

V 
X = A + h  A + v .. 

This equation can be car r ied  through t h e  power h is tory  of t he  reactor .  

the power l e v e l  i s  changed, then the  value of C 

w i l l  be the i n i t i a l  condition ( C s )  at the  new power leve l .  

If 
S 

- 
preceding the  power change 

Also note t h a t  
0 
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X has uni t s  of time-’, and i s  the  theore t ica l  r a t e  constant fo r  migration 

of noble metals from the fue l  sa l t  t o  t h e i r  sinks.  

4.2.9 Noble Metals on Solid Surfaces 

Now t h a t  we have an expression for  the  concentration of noble metals 

i n  fuel salt as a function of time and the power h is tory  of t he  reac tor ,  we 

can compute the amount of noble metals deposited on any surface i n  the  

reactor .  

f o r  t h a t  surface as we did f o r  the  fue l  sa l t .  The same assumptions and 

considerations hold t rue  here as they did fo r  t he  fue l  salt .  In  addi t ion,  

we w i l l  assume there  i s  no interact ion between the bubbles and s o l i d  

surfaces;  i .e.  , the only source of noble metals fo r  the  surfaces i s  d i rec t -  

l y  f romthe  salt.  The r a t e  balance i s  as follows where the  units of each 

t e r m  i s  atoms/time-unit area. 

To do t h i s  we must again s e t  up an unsteady s t a t e  r a t e  balance 

- dCm = Deposition Rate - Decay Rate 
d t  

“he individual term are  as follows: 

Deposition Rate = hm Cs 

Decay Rate = ACm 

Subs t it u t  ing we h ave 

Now, subs t i tu t ing  the value of Cs determined i n  the  previous sect ion 

(Eq. 14), in tegra t ing  over time, and evaluating the constant of integrat ion 

a t  
cm = cm at  t = o 

0 
we get  

-A% 

Cm = 
(YP + Y) + hm ( A p C z s  - yPP/V)e 

+ - [c -  hm s P( h P+y) 
(x - AP) ( A  - AP) A - x  0 xvx 

hm(APCPs - ypP/V) 
0 - A ps - ypp’v] e-xt +{ct h%(yp + y )  - 

(x-XP) ( A 2 )  - A v x  x - AP 

- A t  

- q c s  - p(yP + y )  - x p q s  - ppP/v] r 
vx x - A  A-X 0 

P 



36 

Ld 
This then i s  the  equation fo r  t he  concentration of a noble metal isotope 

on a surface at any time as a function of power. It can be car r ied  

through the  power h is tory  of t he  reactor  j u s t  as t h e  equation for C . S The 
f 

equation i s  applicable t o  any noble metal isotope and t o  any s o l i d  surface 

i n  the  reactor  (Heat Exchanger, Graphite i n  the  Core, Core Surveillance 

Specimens, e t c . )  by proper choice of t he  mass t r ans fe r  coeff ic ient .  

4.2.10 Noble Metals on Liquid-Gas Interfaces  

The pr inc ipa l  difference between deposition on a s o l i d  surface t r ea t ed  

above and the  liquid-gas surface t r ea t ed  i n  t h i s  section i s  t h e  sink 

terms once the  noble metal has reached the  surface. In  t h e  case of t he  

s o l i d  surface,  t h e  only sink term considered w a s  decay. In  the case of a 

liquid-gas in te r face ,  migration of noble metals t o  t h e  off-gas system repre- 

sen ts  another sink term t h a t  must be considered. 

L a t e r  on i n  the  analysis of results from the  MSRE w e  w i l l  want t o  con- 

sider the  en t i r e  gas phase i n  t h e  fue l  loop as a w e l l  mixed pot. The 

e n t i r e  gas phase w i l l  consist  of bubbles c i rcu la t ing  i n  t h e  loop, t he  gas 

phase i n  the  pump bowl and a l s o  pa r t  of t he  gas phase in  the  overflow tank. 

The gas phase i s  defined t o  include the liquid-gas in te r face ,  so tha t  noble 

ne ta l s  attached t o  the  in te r face  w i l l  be considered as pa r t  of the gas 

phase. The reasons will become more apparent la ter  on, but f o r  now l e t  us 
just say tha t  it w i l l  be necessary t o  f ind  a process by which noble metals 

are removed from the reactor  system gas phase as defined above with a 

ra ther  low rate constant. For example, noble metals transported t o  the 

off-gas system or t he  drain tanks would be considered as removed from the  

gas phase as defined above. A t  any r a t e  we w i l l  again w r i t e  an unsteady 

state rate balance around the  gas phase. The same assumptions and con- 

s iderat ions are s t i l l  applicable as i n  t h e  rate balance around the  f u e l  

salt.  

we w i l l  use t o t a l  inventory uni t s  (atoms) i n  t h e  gas phase. 

balance i s  as follows: 

This time , however , instead of using concentration un i t s  (atoms/vol) , 
The rate 

\ 

(22) - -  d1 - Migration rate t o  bubbles - decay rate a t  
- migration rate t o  off-gas system. 
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The individual terms are  as follows. 

bub bub cs Migration r a t e  t o  bubbles - h A 

Decay r a t e  = A I  (24) 

Migration r a t e  t o  off-gas system - X I  (25 1 

The transfer of noble metals from the  pump bowl t o  the  off-gas system is  

dea l t  with i n  a very generaly way. We simply defined a r a t e  constant 

( Z )  which says t h a t  the  rate of t r ans fe r  i s  proportional t o  t h e  t o t a l  

amount of a noble metal isotope. Now, subs t i tu t ing  the  individual terms 

i n t o  the  rate balance, then subs t i tu t ing  the value of Cs from the  fue l  

salt  analysis (Eq. 1 4 ) ,  in tegra t ing  over t i m e  and evaluating the  constant 

of integrat ion at 
I = Io at  t = O ,  (26) 

we get 
- P P Ps - ~ P P / v  e 

A co 1 (27) ( 
- hbAbP[yp + ;) + hb Ab 

( A  + X - AP) x - AP v x  A + X  I -  

ps - yPP/V -xt l e  + hb Ab 11C.s - P(Y> Y )  A co 

x - AP ( A +  X - x )  0 

This then i s  t h e  equation for t h e  t o t a l  amount of a noble m e t a l  isotope 

i n  the  gas phase of t he  f u e l  loop as a function of time and the  power 

h i s to ry  of t he  reac tor ,  and the  rate constant ( Z )  f o r  noble metal 

t r ans fe r  t o  t h e  off-gas system or dump tanks. 
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5. RESULTS FROM THE MSRE 

5 .1  Introduction 

The general approach i n  t h e  analysis of noble metal migration i n  t h e  

MSRE w i l l  be as follows. 

c a l  concentration of noble metals found on the primary heat exchanger by 

gamma spectrometry. 

fo r  t h e  greatest  number of noble metal isotopes.  

made in  s i t u ,  s o  there  can be no question of contamination o r  problems 

associated w i t h  hot c e l l  processing. 

t h i s  conventional U tube heat  exchanger are  f a i r l y  wel l  known. This com- 

parison then i s  qui te  good and seems t o  put t he  ana ly t ica l  model on a firm 

foundation. We w i l l  then look at t h e  core survei l lance samples and show 

how they generally confirm the  results from the  heat  exchanger. Then we 
w i l l  look at the  fue l  salt and gas phase samples. A f t e r  each one of these 

comparisons, observations w i l l  be made on the nature of noble metal migra- 

t ion .  We w i l l  then make a ra ther  crude attempt t o  quantify the  hypothesis 

F i r s t ,  we w i l l  compare t h e  measured t o  theoret i -  

This measurement technique gave quant i ta t ive results 

The measurements were 

Also the  f l u i d  dynamic conditions i n  

t h a t  noble metals accumulate i n  the pump bowl and determine rate constants 

f o r  removal of noble metals from the pump bowl t o  t h e  off-gas system t o  see 

i f  they are physically reasonable. As noted previously, most of t he  

analysis w i l l  be for  measurements made during the  233U operation (runs 15- 
20) ,  although some data are avai lable  f o r  the 235U operation (run 1-14). 

5.2 Comparison of Measured Deposition on Heat Exchanger t o  Theoretical  

The theo re t i ca l  amount of each noble m e t a l  isotope deposited on t h e -  

surface of  the heat exchanger tubes w a s  computed with Eq. 21, and compared 

t o  t h e  measured amount as determined by gamma spectrometry. The measured . 
values following Run 1 4  were obtained from Ref. 10 and a f t e r  runs 18 and 

19 from R e f .  11. Recall  t h a t  t h e  equipment and techniques used t o  

determine f i s s ion  product deposition a f t e r  run 14 were less sophis t icated 

than used after runs 18 and 19, therefore ,  t he  data  following run 14 are 

less cer ta in  than t h e  newer data. The parameters used t o  ca lcu la te  the 

theo re t i ca l  amount (e.g. , mass t r ans fe r  coef f ic ien ts ,  isotope pa rme te r s ,  

e t c . )  are  evaluated and tabulated i n  Appendix B. The computed concentra- 

t i o n  on the heat exchanger takes i n t o  account t he  e n t i r e  power h is tory  of 

the  reactor .  The only sink term f o r  noble metals attached t o  t h e  heat 

t 

i4 
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exchanger i s  decay. It should be noted t h a t  per iodical ly  t h e  fue l  loop 

is  cleaned out by c i rcu la t ing  f lush salt  f o r  a short  period of t i m e .  The 

computed concentration assumes t h a t  t h i s  process does not leach noble 

metals from the surfaces.  

made with and without f lush salt i n  the loop and they indicate  t h i s  assump- 

t i o n  t o  be t rue .  The theo re t i ca l  amounts of noble metals on the  heat 

exchanger were computed on the  basis that  they do not adhere t o  liquid-gas 

interfaces .  Then, by comparison of the  computed amounts w i t h  t h e  measured 

amounts, conclusions of a qua l i ta t ive  nature w i l l  be drawn t o  the  e f f ec t  

t h a t  noble metals apparently adhere t o  liquid-gas interfaces .  

Some of t he  gamma spec t ra  following run 14 were 

The results of t h i s  comparison are  shown i n  Figure 5 . lwhere  t h e  r a t i o  

of measured t o  computed amounts on the  heat  exchanger i s  p lo t ted  against  

the noble metal ha l f  l i f e .  F i r s t  l e t  us look at t h e  curve measured during 

23%J operation. 

spectrometry equipment and are  judged t o  be the  bes t .  

observations can be made. 

These measurements were made with t h e  improved gamma 

The following 

1. The curve i s  made up from 10 isotopes;  3 - rutheniums, 

3 - te l lur iums,  2 - antimonies, 1 - molybdenum and 1 - niobium, some of 

which are duplicated measurements. They seem t o  be rather t i g h t l y  grouped 

around the  l i n e ,  except perhaps 132Te and lo3Ru. One would conclude 

therefore  that  each noble metal isotope migrates as a function of i t s  

own concentration i n  salt  and i s  not influenced by other elemental species 

of noble metals o r  even isotopic  species of the same element. 

2. Note t h a t  t he  curve i s  a s t r a igh t  l i n e  and has a slope very close 

t o  zero,  i .e . ,  noble metal migration i s  not an unaccounted-for function 

of i t s  own half  l i f e .  It i s  important t o  note at t h i s  t i m e ,  because 

la ter  we w i l l  see t h a t  t h i s  is  not t r u e  f o r  t he  f u e l  sa l t  and gas phase 

samples. 

~ 3 .  Because t h e  slope of t he  l i n e  i s  almost zero and because of t he  

t i g h t  grouping of data  around t h i s  l i n e ,  some credence must be given t o  

the  hypothesis t h a t  noble metals migrate according t o  t h e  simplest form 

of mass t r ans fe r  theory. The good correlat ion a l so  speaks wel l  f o r  the 

qua l i ty  of t h e  gamma spectrometry data. 

however, because t h e  measured t o  theo re t i ca l  concentration r a t i o  is  con- 

siderably less than uni t  f o r  t he  23% run determinations, and t h i s  w i l l  be 

discussed short ly .  

Something i s  s t i l l  missing, 
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4. Note t h e  good agreement between 95Nb and the  other noble metals. 

It w a s  pointed out previously t h a t  95Nb sometimes behaves as a sal t  seeking 

f i s s ion  product and sometimes as a noble metal, depending on t h e  oxidation- 

reduction state of the fue l  salt .  The f u e l  w a s  i n  a reduced state at t h e  

end of runs 18 and 19 s o  t h i s  95Nb behavior i s  as expected. 

Now consider t h e  data  measured during the  235U operation. The same 

observatiops and conclusions can, i n  general, be made f o r  t h i s  curve, but  

on a l e s s e r  sca le  because there  are  fewer isotopes involved. The magnitude 

of t h e  measured t o  calculated r a t i o  i s  d i f fe ren t  and is  i n  the v i c in i ty  of 

1 .0 .  

The f u e l  sa l t  w a s  generally i n  a more reduced s t a t e  during the  235U oper- 

a t ion and Nb behaved as a noble metal. 

Again note t h e  good agreement between 95Nb and the  other noble metals. 

Now - why is  the  magnitude of the  measured t o  theo re t i ca l  concentra- 

t i o n  r a t i o  on the  tube surface close t o  unity when measured a f t e r  run 14 
(last 235U run)  and 0.15 - 0.20 when measured during runs 18 and 19 
( 
operational charac te r i s t ics  of t h e  MSRE when operating w i t h  235U and 

233 U runs)? A s  noted i n  section 3.3, there  was  a dramatic difference i n  
233u 

The difference was  most apparent i n  the  amount of bubbles c i rcu la t ing  w i t h  

the fue l  sa l t .  A s  noted e a r l i e r  the  void fract ion of bubbles during the  

235U runs w a s  0.02 - 0.045%, while during the  233U runs, it was  0.5 t o  

0.6%, up by a fac tor  of about 20. The theo re t i ca l  amount i n  the  denomina- 

t o r  of the ordinate of Figure 5.1  i s  computed assuming t h a t  noble metals 

do not adhere t o  liquid-gas interfaces  (c i rcu la t ing  bubbles). 
hypothesized that  noble metals do deposit on these in te r faces ,  so the  

bubbles w i l l  compete with t h e  heat  exchanger as a noble metal depository. 

If t h i s  concept i s  included i n  t h e  calculat ion,  then t h e  computed amount 

on the heat exchanger w i l l  diminish and the value of t he  ordinate w i l l  

increase. It is  a l s o  assumed tha t  there  i s  no in te rac t ion  between t h e  

bubbles and the  heat exchanger surfaces ,  s o  i f  a noble metal atom migrates 

t o  a bubble, it is  no longer available t o  deposit on the  heat exchanger. 

Since the  f u e l  sa l t  contained many times more bubbles during the  

t h e  23% curve w i l l  move up much more than the  235U curve. 

then t h i s  w i l l  explain the  difference i n  elevation of the two curves. 

Quant i ta t ively,  it i s  a b i t  more d i f f i c u l t ,  because using the  bes t  

.i 

It has been 

233, . 
' runs than the  235U runs , including bubbles i n  the calculat ion,  

Qual i ta t ive ly  . 
hB 
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estimated values of bubble surface a rea  and mass t r ans fe r  coeff ic ient  

(see Appendix B )  , both curves are  pushed upward p a r a l l e l  t o  themselves t o  

a value considerably greater  than unity. 

mechanistic "sticking fraction" i s  brought i n t o  the  calculat ion , we can 

again br ing both curves down t o  a value very close t o  unity.  

f rac t ion  i s  defined as t h a t  f rac t ion  of atoms t h a t  contact t h e  in te r face  

and adhere t o  it. 

surfaces i s  maintained a t  uni ty ,  then a s t ick ing  f rac t ion  t o  liquid-gas 

interfaces  of 0.1 - 0.2 i s  required t o  br ing the  value at t h e  ordinate 

If the  empirical bu t  nevertheless 

The s t ick ing  

If the  s t ick ing  f rac t ion  of noble metals t o  s o l i d  

of both curves close t o  unity.  

siderably less than 1.0 w a s  not expected. For instance(22) ,  noble metals 

w e r e  found i n  s ign i f icant  quant i t ies  i n  helium passed over the  surface of 

quiescent molten fue l  salt samples i n  a hot c e l l  experiment. The vapor 

pressure of noble metals i s  diminishingly s m a l l  a t  these temperatures 

and cannot possibly account f o r  t he  concentrations observed. The indivi-  

A s t ick ing  f rac t ion  of noble metals t o  a liquid-gas in te r face  con- 

dual noble metal atoms or very s m a l l  c lus te rs  of them, are  apparently 

spontaneously expelled from the  surface. Considerations of t h e  i n t e r f a c i a l  

energies involved indicate  t h i s  t o  be possible.  (23) 
expect a s t ick ing  f rac t ion  t o  bubbles of unity. A ra t iona l iza t ion  of 

t h i s  apparent paradox i s  as follows. An observation from the  reactor  i s  

t h a t  many of t he  smaller bubbles c i rcu la t ing  with the  f u e l  salt  completely 

dissolve i n  t h e  higher pressure par t  of t he  f u e l  loop. 

observation i s  a r e su l t  of an analysis t o  explain the  135Xe poisoning 

e f f ec t s  observed i n  t h e  reactor.  Note t h a t  t h e  surface tension of molten 

salt i s  qui te  high, about 200 dynes/cm. 

the  pump and begins t o  dissolve,  i t s  diameter decreases. The in t e rna l  

pressure above ambient , as generated by the  surface tension (4a/d) becomes 

qui te  high (0.8 p s i  fo r  0.005 in .  bubble) and fur ther  enhances the  dis- 

solution rate. This continues t o  t h e  l i m i t  and the  bubble dissolves.  

The process is  very rapid 'and analysis indicates  only a few seconds are 

required. If t h i s  bubble contained some noble metals before it dissolved, 

we would end up with a noble metal c lus t e r  associated with t h e  salt  again, 

ra ther  than a bubble. Qualitatively then,  here i s  a mechanism where t h e  

Therefore , one would 

( 2 4 2 5 )  

When a bubble is  pressurized by 

. 
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t h e  s t ick ing  f rac t ion  of noble metal atoms t o  a liquid-gas in te r face  

can be unity but where it actual ly  appears t o  be l e s s  than unity.  

Possibly other mechanisms could a l so  be devised. 

I, 
- 

r+ Conclusions. The conclusion from examination of noble metal deposi- 

t i o n  on the  primary heat exchanger as determined by gamma spectrometry, i s  

t h a t  noble metals apparently do migrate and deposit on these surfaces i n  

accordance with t h e  l a w s  of mass t r ans fe r  i n  the  simplest form. Deposi- 

t i o n  on liquid-gas interfaces  (bubbles) m u s t  be included i n  t h e  calculat ion 

t o  force the calculated concentration t o  equal the measured concentration 

on the  tubes. The exact mechanism of noble metal deposition on l iquid-  

gas in te r faces  i s  not known and had t o  be handled i n  a semiquantitative 

way involving apparent s t ick ing  fract ions t o  bubbles, 

same conclusions w i l l  be reached after each analysis section i n  t h i s  

Essent ia l ly  these 

report .  

5.3 Comparison of Measured Deposition on Core Surveillance Samples 
t o  Theoretical  

The theo re t i ca l  amount of each noble metal isotope deposited on 

the  surface of t h e  graphite and t h e  Hastellpy-N core surveil lance samples 

was computed and compared t o  the  measured amount. The measured values were 

obtained from semiannual reports .  (26s 279 28 and 29) m e  Same introduce 

to ry  remarks are  applicable here as i n  t h e  f irst  paragraph of t he  last  

section. Most important, r e c a l l  that  t he  theo re t i ca l  amount w i l l  be com- 

puted on t h e  bas i s  t h a t  noble metals do not deposit on liquid-gas in te r -  

faces.  The mass t r ans fe r  coeff ic ient  was estimated i n  Appendix B t o  be 

about 0.25 f t / h r  f o r  both t h e  graphite and Hastelloy-N. 

i n  t h i s  nmber  i s  considerable. 

The uncertainty 

The r e su l t s  of t h i s  comparison are shown i n  Figure 5.2 for t h e  

graphite specimens and Figure 5.3 fo r  t h e  Hastelloy-N specimens. Again, 

the  r a t i o  of t h e  measured t o  theo re t i ca l  amount i s  plo t ted  against  t h e  

noble metal ha l f  l i f e .  

was given t o  t h e  95Nb points  f o r  reasons t o  be discussed later.  

following observations can be made: 

In  drawing l i n e s  through the  da ta ,  no weight 

The - 

E 

w 
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1. Three different  sets of graphite samples (Figure 5.2) were ex- 

All th ree  are con- posed t o  fue l  salt  during only t h e  235U operations. 

s i s t e n t  with each other and the  data  points a re  ra ther  t i g h t l y  grouped 

around a s ingle  l i n e .  
l i ne .  Recall t h a t  t he  fue l  salt w a s  i n  a reduced s t a t e  during the  

operations and 95Rb behaved as a noble metal and would therefore  be ex- 

pected t o  f a l l  on t h e  l i n e .  

An exception i s  95Nb which l ies  wel l  above t h e  
2 35, 

More w i l l  be sa id  about t h i s  below. 

2 .  One s e t  of graphite samples was exposed t o  fue l  sa l t  during only 

233U operations. This curve f a l l s  below and p a r a l l e l  t o  t h e  previous - 

curve f o r  235U operation. 

metals i n  t he  heat exchanger i n  the  last section and t h e  same conclusions 

can be drawn. 

This i s  consistent with observations of noble 

3. The curves for graphite m a y  have a s igni f icant  slope at t h e  low 

ha l f  l i f e  end which i s  not consistent with the  gamma spectrometry data  

from the  heat exchanger. 

l i v e s  over about 500 hours. This w i l l  be discussed fur ther  below. 

The r e l a t i v e  elevation of t h e  curves through the  deposition data 

The slope seems t o  be zero however f o r  half 

4. 
on the  Hastelloy-N surveil lance samples (Figure 5.3) do not confirm t h e  

previous observations from the  heat  exchanger and graphite.  

however more s c a t t e r  i n  the  data. 

There i s  

5. Concerning the  absolute value of the  measured t o  theo re t i ca l  r a t i o  

of the  noble metal concentration. 

Hastelloy-N (Figure 5.3) seems to agree with t h e  previous value from the  

heat exchanger, however, t he  data  from t h e  235U runs do not agree. 

An overa l l  average of t he  23%J l i n e  f o r  

6. The measured t o  theo re t i ca l  concentration r a t i o  fo r  a l l  t h e  

graphite samples seems t o  f a l l  somewhat below the  data from the  heat ex- 

changer and Hastelloy-N samples. There are  two explanations f o r  t h i s .  

F i r s t  , inadequate knowledge of t he  m a s s  t r ans fe r  coef f ic ien t ,  although 

t h i s  probably i s n ' t  enough t o  account f o r  t he  e n t i r e  discrepancy. 

t he  more plausible  explanation i s  t h a t  t he  s t ick ing  f rac t ion  f o r  graphite 

i s  less than unity.  

Second, 

More w i l l  be sa id  about t h i s  below. 

Let us consider some of t he  above discrepancies with graphite and 

see i f  we can br ing them in€o l i n e  with previous observations and conclu- 

sions from the  heat exchanger analysis.  

noble metal s t ick ing  f rac t ion  t o  graphite i s  l e s s  than unity.  

F i r s t  l e t  us hypothesize t h a t  t he  

We have 
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noted t h a t  t h i s  i s  l i k e l y  i n  observation number 6 above. 

firmed more d i r ec t ly  i n  Section 5.7 when w e  look at t h e  r e su l t s  of a 

This w i l l  be con- 

spec ia l  laminar flow core surveil lance tes t  during the  last  MSRE operation- 

a1 period. 

graphite under MSRE operating conditions. The graphite could therefore  ac t  

as an i n f i n i t e  sink fo r  Nb, i . e . ,  i t s  s t ick ing  fract ion could be unity.  

An ef fec t ive  s t ick ing  f rac t ion  of 95Nb t o  graphite of uni ty ,  and a s t ick ing  

f rac t ion  of t h e  other noble metals of l e s s  than uni ty ,  would explain t h e  

95Nb points  being s o  much higher than the  other noble metals i n  Figure 5.2. 
In f a c t ,  t he  r a t i o  between the  curves and t h e  'g5Nb data c lus t e r  could be a 

d i rec t  measure of the  s t ick ing  f rac t ion  of the  other noble metals r e l a t i v e  

t o  95Nb. 

2.4 min) i s  a precursor of "Mo. 
i s  a s igni f icant  migrating species i n  t h i s  decay chain. 

of "Nb migrate t o  the  graphite w i t h  a s t ick ing  f rac t ion  of unity and decay 

i n t o  "Mo, t h e  measured amounts o f  "Mo would a l so  be r e l a t ive ly  higher 

than t h e  other  noble metals. Therefore, t h e  l e f t  s ide  of the curves i n  

Figure 5.2, which are controlled t o  an extent by "Mo, might tend t o  be 

higher than the  other noble metals. Another e f f ec t  t h a t  m u s t  be considered 

i s  t h a t  during the  f i n a l  week of run 18, the  fue l  pump was  operated at a 

s l i g h t l y  reduced speed. 

Now, there  i s  evidence (30) t h a t  Nb forms a s tab le  carbide w i t h  

W e  can carry t h i s  discussion one s tep  fur ther .  "N% (half  l i f e  = 

Its  ha l f  l i f e  i s  high enough so that  it 

If then,  amounts 

. 

The pr inc ipa l  e f f ec t  w a s  t h a t  during t h i s  period 

t h e  c i rcu la t ing  void fract ion w a s  more equivalent t o  the  235U runs than 

t h e  233U runs. 

during t h i s  period the  nobie metal deposition rate on so l id  surfaces would 

be grea te r ,  Since the  time period was r e l a t ive ly  sho r t ,  it would elevate  

only the  low half  l i f e  end of the curve. This l a s t  point may also help 

explain why the short  ha l f  l i f e  end of the  233U curve f o r  deposition on 

Hastelloy-N (Figure 5.3) i s  higher than expected. 

Since there  were fewer bubbles, one m i g h t  expect t h a t  

Conclusion. The conclusions then,  from examination of noble metal 

deposition data  from the  core surveil lance samples, is  t h a t  they generally 

confirm the  conclusions arr ived a t  a f t e r  examination of the  heat exchanger 

i n  Section 5.2. 
graphite i s  less than unity.  

the  behavior of Nb. 

T 

It appears t h a t  t h e  sticking; f rac t ion  of noble metals t o  

We have had t o  form a hypothesis t o  explain 
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5.4 

The theo re t i ca l  amount of each noble metal isotope contained i n  the  

f u e l  salt  (Eq. ( 1 4 )  i n  Section 4.2) w a s  computed and compared t o  t h e  

measured amount i n  the  f u e l  sa l t  samples. 

w a s  computed on the  basis t h a t  noble metals do not deposit on l iquid-  

gas interfaces .  The measured and computed concentration d i f fe red  by 

1-4 orders of magnitude , t he  measured concentration always being higher. 

I n  an attempt t o  resolve t h i s  discrepancy , t h e  measured-to-theoretical 

concentration r a t i o  w a s  p lo t ted  against t he  f rac t ion  of i t s  t o t a l  capacity 

Comparison of Fuel Sa l t  Samples with Cs 

Again the  theo re t i ca l  amount 

t h a t  each sample capsule w a s  f i l l e d .  These p lo t s  seem t o  be unique and 

are shown i n  Figures 5.4 through 5.9 f o r  Io3Ru, '06Ru, "MO, 12g%e, 

132Te and 95Nb,  respectively.  

w a l l  freeze valve, is  dist inguished on the  p lo ts .  

The kind of sample,freeze valve o r  double- 

Recall t h a t  a freeze 

valve capsule contains 50-60 grams of salt  then f u l l  and a double w a l l  

freeze valve capsule holds about 1 5  grams of salt  when f u l l .  Ladle sample 

data are  not included on these p lo t s  fo r  reasons pointed out i n  Section 

3.2. A l l  reported freeze valve capsule data  are on these p lo t s  except 

those taken at zero power. It is  a cha rac t e r i s t i c  of t h e  ana ly t ica l  

model t h a t  t he  noble metal concentration i n  sal t  goes t o  zero shor t ly  

after the  reactor  power goes t o  zero. 

centration r a t i o  would therefore approach i n f i n i t y  i f  any noble metals at 

a l l  were measured i n  the  sample. 

about these curves. 

The measured t o  theo re t i ca l  con- 

The following observations can be made 

1. All curves, except t h a t  f o r  g5Nb, behave i n  a similar manner. 

For samples t h a t  were mostly empty, t h e  measured t o  theo re t i ca l  concentra- 

t i on  r a t i o  i s  orders of magnitude higher than f o r  those samples t h a t  were 

mostly f u l l .  

2. 95Nb i s  being car r ied  along f o r  comparison, s ince it can behave 

e i the r  as a noble metal o r  a sal t  seeking f i s s ion  product, depending on 

t h e  oxidation-reduction state of t he  salt.  

concentrations i n  fue l  salt are  negative. This i s  because the  reported - 
95Nb concentration w a s  extrapolated back from the  t i m e  of measurement t o  

t h e  time of sampling. 

g5Nb, and therefore  it m u s t  a l so  be counted. 

is  sens i t ive  and a s m a l l  e r ro r  i n  t h e  9 5 Z r  concentration measurement 

Many of t h e  reported 95Nb 

9 5 Z r  with a 65-day ha l f  l i f e  i s  a precursor of - 
The back calculat ion i n  time 

, 
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can r e s u l t  i n  a negative 95Nb concentration. 

a l s o  the  disappearance and reappearance of 95Nb i n  Figure 5.9 is  

apparently r e l a t ed  i n  some way t o  the  fuel salt f luctuat ing between the 

oxidized and reduced state. 

The shotgun pa t te rn  and 

3. The sample capsules showing the  highest r a t i o  of measured t o  

theo re t i ca l  concentration are  mostly empty. The c i rc led  c lus t e r  of 

samples labeled as Sample Grouping No. 1 are representative of t h i s  end 

of t he  curve. They are a l l  double-wall freeze valve samples. They con- 

t a i n  2-5 grams of salt  but  i f  they were f u l l  they would hold 14-15 grams. 

4. Conversely, t he  samples showing the  lowest measured t o  theore t ica l  

concentration r a t i o  are f u l l .  The c i rc led  c lus t e r  labeled Sample Grouping 

No. 2 i s  used t o  represent t h i s  end of the  curve. 

the only freeze valve sample taken during the  235U runs. 

samples, these capsules were f i l l e d  from 75% t o  90% of capacity. 

This group represents 

In taking 

5 .  The samples are in t e rna l ly  consistent;  i .e . ,  t h e  concentration 

of each noble metal isotopes i s  p rac t i ca l ly  always e i t h e r  high or low i n  

any individual sample. This i s  i l l u s t r a t e d  by the  c i r c l ed  c lus t e r s  of 

data points  re fer red  t o  as Sample Grouping No.  1 and Sample Grouping No. 

2. Each grouping on each f igure encompasses the  same samples. Notice 

how consis tent ly  t i g h t  each grouping is. Sample Grouping No. 1 repre- 

sen ts  t he  high and of the  curve and Sample Grouping No. 2 represents the  

lower end of t he  curve. 

6.  One might make t h e  observatioq t h a t  t he  curves seem t o  be 

approaching a low value of the  measured t o  theo re t i ca l  concentration r a t i o  

at high sample weights. Par t icu lar ly  the  shorter  l i ved  isotopes 

( 99 Mo and 132Te) almost seem t o  be approaching a value of uni ty  (measured 

concentration = t heo re t i ca l  concentration). This observation i s  not 

warranted. Recall t h a t  t h e  theo re t i ca l  concentration i s  computed fo r  

the  case t h a t  noble metals do not deposit on liquid-gas interfaces .  

We have hypothesized i n  previous sect ions and l a t e r  i n  t h i s  sect ion tha t  

they must deposlt on these interfaces .  If th i s  depository i s  included 

i n  t h e  calculat ion then t h e  computed concentration w i l l  be reduced and 

the  measured t o  theo re t i ca l  concentration r a t i o  w i l l  be increased 

accordingly. The uncertaint ies  associated with t h i s  term are  so great  

(par t icu lar ly  t h e  s t ick ing  f rac t ion)  t h a t  w e  cannot go i n t o  any de ta i led  
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analysis of it. Let us only say t h a t  i f  we did include t h i s  term i n  

the  calculat ion,  then t h e  data  points i n  Figures 5.4 - 5.8 could r ise more 

o r  less uniformly by as much as a fac tor  of 5 during the  235U operation 
( s t i c k  f rac t ion  t o  bubbles = 1.0) and a good deal  more for the  233u 

operation. 

How can we  explain these curves i n  a manner consistent with previous 

observations and conclusions on noble metal migration? We have already 

hypothesized that  noble metals deposit on liquid-gas in te r faces  (circula- 

t i n g  bubbles),  and data  from t h e  heat exchanger and core surveil lance 

samples seem t o  confirm t h i s .  Many qual i ta t ive  observations discussed 

i n  sect ion 3 a l so  confirm t h i s  hypothesis. Presumably the  bubbles would 

carry the  noble metal atoms or s m a l l  c lus te rs  of them t o  t h e  pump where 

they would co l lec t  on t h e  large amount of liquid-gas in te r face  avai lable  

i n  t h i s  region. The small c lus te rs  could then coalesce i n t o  l a rge r  

c lus te rs  and eventually form a scum f loa t ing  on the sal t .  

s i z e  tha t  these noble metal c lus te rs  have propert ies  similar t o  insoluble 

surface act ive agents and tha t  the pump bowl i s  behaving i n  a manner 

similar t o  a f ro th  f lo t a t ion  chamber. This suggestion has been made 

before. i31’ 32) 

noble corrosion products and f i s s ion  products accumulating i n  the pump 

bowl and displaying the  propert ies  of insoluble surface ac t ive  agents 

are responsible fo r  the differences between t h e  235U and 233U operating 

charac te r i s t ics  of the  ERE. A s  a matter of f a c t ,  f l o t a t ion  of reduced ’ 

Fe, N i  and C r  from f u e l  salt has been demonstrated i n  a tes t  tube sca le  

laboratory experiment. (36) 
i n  t he  ore processing industr ies .  The fundamental requirements f o r  a 

f lo t a t ion  process t o  work are:  

Let  us hypothe- 

It has beensuggested i n  Section 3.3 of t h i s  report  t h a t  

Froth f lo t a t ion  i s  a common un i t  operation 

(33) 

1. 

2. The gas-liquid-solid contact angle m u s t  be greater  than zero 

The s o l i d  phase must be insoluble i n  the  l i q u i d  phase. 

( the  s o l i d  only p a r t i a l l y  wet by the l i qu id ) .  

3. The s o l i d  pa r t i c l e s  must be small enough so that  t h e i r  sheer 

mass w i l l  not sink them below the  surface (gravi ty  forces < surface 

tension forces ) . 

Id 

. 
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The noble metals (and noble corrosion products from t h e  chemical re- 

processing) s a t i s f y  these conditions. 

Contact angles are reported i n  t h e  range of 90-105O. (17) They are  mostly 

unwet and i n  a range fo r  good f lo ta t ion .  Pa r t i c l e  diameters of materials 

They are  insoluble i n  fuel salt .  

obtained from the  gas phase over s a l t  samples have been estimated by various 

techniques. 

p a r t i c l e  diameters, range from a few angstroms t o  a f e w  microns. 

The lower end of the  range possibly represents t h e  diameter of individual 

pa r t i c l e s  where the  upper end i s  associated with flocks of pa r t i c l e s .  The 

uncertainty of e f fec t ive  pa r t i c l e  diameter i s  unimportant since the  e n t i r e  

range fa l ls  i n  a region of good f lo ta t ion .  

These diameters, thought t o  be indicat ive of noble metal 
(34,35,36) ) 

As noted i n  Section 3.3, t h e  

property of surfactants  t h a t  is  s igni f icant  t o  t h i s  analysis i s  that  they 

enhance bubble s t a b i l i t y  and a l so  r e s u l t  i n  smaller bubbles being generated 

i n  t h e  pump bowl. 

are  present i n  the  salt  sampling pool e i the r  as a f a i r l y  s t ab le  f ro th  

f loa t ing  on t h e  sal t  o r  as very s m a l l  bubbles d r i f t i n g  w i t h  t he  salt  o r  

both. 

When a freeze valve capsule thaws and draws i t s  sample, it would be ge t t ing  

a grea te r  o r  l e s s e r  amount of gas with t h e  s a l t ,  depending on the s i tua t ion  

It would not seem unreasonable then,  t h a t  small bubbles 

These bubbles would be high i n  noble metal content (on t h e i r  surface) .  

i n  t h e  salt pool at that  time. I f  it took i n  a large amount of gas , t he  

capsule would be mostly empty but have a high noble metal content (as f o r  

instance Sample Grouping No. 1 on Figures 5.4 - 5.8). 
amount of gas, it would be fu l l  and r e l a t ive ly  low i n  noble metal content 

\ (as Sample Grouping No. 2 on t h e  same figures),. 

explanation fo r  &he curves i n  Figures 5.4 - 548. 
sis i s  t r u e  , then even t h e  least contaminated samples , represented by 

Sample Grouping No. 2 ,  are s t i l l  not representative of the  fuel salt .  

If it took i n  a s m a l l  

This then i s  t h e  suggested 

Note t h a t  i f  t h i s  hypothe- 

One might expect t o  be able t o  cor re la te  the condition of t h e  s a l t  

sample (high o r  low noble metal concentration) with some other measurable 

operating var iables  of t he  reac tor ,  fo r  instance,  overflow rate, c i r -  

culat ing void f rac t ion ,  e t c .  

MSRE being an experimental reac tor ,  w a s  subjected t o  a great many per- 

turbat ions (power l e v e l  changes, reductant and oxidant additions,  pump 

speed changes, draining and flushing the  f u e l  loop, cover gas changes, e t c )  , 
most of which would be expected t o  e f fec t  t h e  condition of t he  sample, and 

w e  were unable t o  ex t rac t  any obvious correlat ions.  

An attempt w a s  made t o  do t h i s ,  however, the  
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The i n t e r a l  consistency of t he  samples allows us t o  carry t h e  analysis 

one s tep  fur ther .  As noted i n  Observation No. 5 ,  t h e  concentrations of a l l  

noble metal isotopes are  usually consistent i n  an individual  sample ( e i the r  

high o r  low). This i s  i l l u s t r a t e d  by Sample Grouping No. 1 and No. 2 i n  

Figures 5.4 - 5.8. 
and each grouping i s  ra ther  t i g h t .  

determined and p lo t ted  against t he  noble metal ha l f  l i f e .  

correlat ion is  shown i n  Figure 5.10 and represents a p lo t  similar t o  t h a t  

used i n  analysis of noble metals on t h e  heat  exchanger and core survei l -  

lance samples. 

core surveil lance sample yielded a l i n e  with a slope of zero, whereas the  

slopes of t he  l i nes  i n  Figure 5.10 are qui te  high. If the  ana ly t ica l  model 

i s  correct and the  samples a re  t r u l y  representative of t h e  f u e l  sa l t ,  then 

- 

Each grouping on each f igure contains t h e  same samples, 

The geometric m e a n  of each group w a s  
The resu l t ing  

Recall t h a t  t h e  equivalent p lo t s  fo r  t he  heat exchanger and 

the  slope of t h i s  l i n e  should a l so  be zero. We have shown however t h a t  t h e  

s a l t  samples a re  not representative of t he  s a l t ,  but r a the r  are more 

representative of the  noble metals accumulated on the  liquid-gas in te r faces  

i n  the  pump bowl. 

In  Section 5.6 of t h i s  report  we w i l l  a t tach some physical s ignif icance t o  

the  slope of these l i nes .  

It i s  not surpr is ing then, t h a t  t h e  slope i s  not zero. 

Figure 5.11 i s  the  same kind of p lo t  as Figure 5.10, but instead of 

picking grouped data points ,  we averaged geometrically a l l  t h e  freeze valve 

and double walled freeze valve capsule data fo r  each MSRE run. Beside each 

data point i n  parenthesis i s  the  number of samples included i n  t h e  average. 

Note t h a t  t h e  curves move up the  ordinate with run number. This observation 

w i l l  be made more dramatic when we compare it t o  the  same kind of p lo t  f o r  

t h e  gas phase samples. The gas samples do t h e  reverse,  t h a t  i s ,  decrease 

with run number. We w i l l  discuss t h i s  observation at t h a t  t i m e .  

Conclusion. The emphasis i n  t h i s  section from examination of f u e l  

salt samples , concerns t h e  attachment of noble metals and reduced corrosion 

products t o  liquid-gas in te r faces ,  and how they apparently accumulate i n  the  

MSRE pump bowl and enhance the  frothing and bubble making capacity of 

t h i s  region. This i s  consistent with conclusions reached from examination 

of data from the  primary heat  exchanger and core surveil lance samples. 
* 
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5.5 Comparison of Gas Samples with Cs 

The fac t  t h a t  t he  noble metals are  found in  large quant i t ies  i n  t h e  

gas samples from the  pump bowl may be surprising. They have a vanishingly 

s m a l l  vapor pressure s o  t h a t  cer ta inly i s n ' t  t he  mechanism. In  Section 5.2 
it w a s  noted t h a t  noble m e t a l  atoms or very s m a l l  c lus te rs  of them can be 

spontaneously expelled from the  surface of quiescent fue l  salt .  This in- 

formation w a s  determined i n  a careful ly  controlled laboratory t e s t .  Under 

conditions t h a t  ex i s t  i n  t he  pump bowl, one may reasonably expect t he  bulk 

of these s ingle  atoms and very small c lus te rs  t o  be trapped and coalesce 

with the l a rge r  amounts of noble metal f i s s ion  products (and noble cor- 

rosion products from the  chemical reprocessing) i n  t h e  form of scum and 

deposits on the  bubbles, ra ther  than t o  break through and migrate t o  the  

off-gas system themselves. A more l i ke ly  mechanism, which i s  consistent 

w i t h  t h e  conclusions reached s o  far i n  t h i s  repor t ,  i s  tha t  most of the 

noble metals measured i n  t he  gas samples are car r ied  by a salt  m i s t  tha t  i s  

high i n  noble metal content. 

r ing  generates large quant i t ies  of bubbles. These bubbles then work t h e i r  

way back t o  t h e  surface and become f ro th .  We have theorized tha t  t h i s  

f ro th  i s  high i n  noble metal content. 

pure l iqu ids  w i l l  not foam. If there  i s  foam present i n  the pump bowl, 

it i s  surely heavy i n  noble metal f i s s ion  products and reduced corrosion 

products. Presumably the  pump bowl reaches a steady s t a t e  foaming condi- 

t i on  i n  which bubbles burst  as f a s t  as they are formed. They burst  spon- 

taneously or because of mechanical action of $he spray. A t  any r a t e  t h i s  

process i s  accompanied by the  generation of a salt  mist which is highly 

concentrated i n  noble metals. (37)  
gas phase of t h e  sampling volume and influence t h e  gas samples. Small 

amounts of salt-seeking f i s s ion  products are  always found i n  gas phase 

samples indicat ing fue l  sa l t  i s  present.  "his mist would a l so  migrate 

i n t o  t h e  off-gas system m e r e  noble metals have been found i n  s ign i f icant  

concentrations. This then i s  the  suggested mechanism fo r  t h e  appearance 

of noble metals i n  gas phase samples. 

The impingement of t he  j e t s  from the  spray 

A w e l l  accepted observation i s  that 

Presumably t h i s  mist w i l l  d r i f t  i n t o  the  
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The ana ly t ica l  model developed i n  Section 4 does not contain a term 
There i s  no funda- for  the  noble metal concentration i n  the  gas phases. 

Ld 

mental bas i s  fo r  using concentration uni ts .  

pare the measured noble metal concentration i n  the  gas sample t o  t h e  

theo re t i ca l  concentration i n  t h e  fue l  sa l t ,  at the  t i m e  of sampling. The 

theo re t i ca l  concentration i n  s a l t  then becomes a normalizing fac tor .  The 

same conditions apply t o  the  calculated Concentration as before. The 

pr inciple  being tha t  t h e  theo re t i ca l  concentration i s  computed fo r  t h e  case 

that  noble metals do not migrate t o  liquid-gas interfaces .  Figure 5.12 

shows the  r e su l t s  of t h i s  calculation. The ordinate normalizes t h e  t o t a l  

noble m e t a l  count i n  the  gas sample t o  the  theo re t i ca l  concentration i n  

one gram of salt .  The abscissa normalizes the  t o t a l  measured amount of 

salt seeking f i ss ion  products i n  the sample t o  the  theo re t i ca l  amount 

i n  one gram of sal t .  Since t h e  salt seekers are uniformly d is t r ibu ted  i n  

t h e  f u e l  s a l t ,  t he  abscissa is measured i n  the  amount of sa l t  i n  t h e  sample. 

In  order t o  decrease the s c a t t e r  and the  t o t a l  number of data points ,  t he  

ordinate value Of each data  point represents the  geometric mean of the  

f ive  noble metals isotopes indicated i n  t h e  p lo t  and the abscissa  value 

represents the  geometric mean of four salt-seeking f i s s ion  product 

isotopes indicated.  There does seem t o  be a correlat ion between the  

amount of noble metal f i s s ion  products i n  a sample and t h e  amount of salt- 

weeking f i ss ion  products. 

content of a sample i s  i n  proportion t o  the salt  content. This is  con- 

s i s t e n t  with the  idea tha t  t he  fue l  salt  i s  t h e  c a r r i e r  of noble metals. 

The best we can do i s  t o  com- 

Although the s c a t t e r  i s  high, t he  noble metal 

Figure 5.13 is  a p lo t  of gas sample data  equivalent t o  Figure 5.11 
fo r  salt  samples. A l l  t he  reported data  from routine gas samples taken 

during each 233U run were geometrically averaged and p lo t t ed  against  t h e  

noble metal ha l f  l i f e ,  The number i n  parenthesis beside each data  point 

indicates  t he  number of samples used i n  the  geometric average. Note t h a t  

t he  curves move down t h e  ordinate w i t h  time as indicated by t h e  run number. 

As  noted before t h i s  behavior i s  pa r t i cu la r ly  s t r i k i n g  when these curves 

are compared with the  curves i n  Figure 5.11 f o r  salt  samples. The salt 
1 

sample curves move up the  ordinate w i t h  t ime, bu t  less uniformly than the  * 

gas sample curves. 

sents  a change i n  f rothing charac te r i s t ics  i n  t h e  pump bowl w i t h  t i m e .  

This behavior i s  not understood but probably repre- 



63 

P 
ORNL-DWG 70-15018 I 

i 

! 
! - .  I 

5 

ABSCISSA - EACH DATA POINT IS GEOMETRIC 
AVERAGE OF RATIO FOR 9 1 Y ,  

10-5 2 5 10-4 2 5 10-3 2 5 10'2 

MEASURED AMOUNT OF SALT SOLUBLE FISSION PRODUCTS I N  GAS SAMPLE (dpm/sample) 
THEORETICAL AMOUNT OF SALT SOLUBLE FISSION PRODUCTS PER GRAM OF SALT (dpm/gm-salt) 

FIGURE 5.12. COMPARISON OF THE AVERAGE AMOUNT OF NOBLE METALS 
IN GAS SAMPLES TO THE AVERAGE AMOUNT OF SOLUBLE F I  SS I ON PRODUCTS 

IN GAS SAMPLES 



64 

, 

I 

ORNL-DWG 70-14019 

i o  2 5 102 2 5 103 2 5 104 
NOBLE METAL HALF L I F E  (hr )  

FIGURE 5.13. COMPARISON TO THE MEASURED (GAS SAMPLE) 
TO THEORETICAL ( I N  SALT) CONCENTRATION TO NOBLE METAL HALF L I F E  

BY MSRE RUN NUMBER 

LJ 



65 

b, 
t 

i 

P 

L;d 

Recall t h a t  at the  start  of 233U operation, a large amount of reduced 

corrosion products (which act  as noble metals) suddenly appeared i n  the 

reactor  system. Over a period of time they would eventually work t h e i r  

way out of t he  reactor  system and i n t o  the  off-gas system or  possibly . 

t h e  overflow tank o r  dump tank. 

of t h e  pump bowl might be expected t o  change as the amount decreased. 

A t  any rate the  foaming charac te r i s t ics  

Conclusions. The only conclusion tha t  can be reached from analysis 

of t h e  gas samples i s  t h a t  t he  noble metals i n  the  gas samples owe t h e i r  

existence t o  a salt  m i s t  generated by burst ing bubbles tha t  a re  high i n  

noble metal content. This confirms previous conclusions tha t  noble metals 

adhere t o  liquid-gas interfaces .  

5.6 Time Constant f o r  Noble Metals on Interfaces  

W e  have concluded t h a t  noble metals deposit on liquid-gas in te r faces  

and remain there  with a high degree of s t a b i l i t y .  

reached from qual i ta t ive  observations of the  reactor  behavior, and from 

noble metal migration analysis i n  t h i s  report .  

the measured noble metal content of both,  t he  f u e l  salt and gas phase 

samples, is  primarily a measure of t he  concentration associated w i t h  these 

interfaces .  

l i nes  i n  Figures 5.10, 5.11 (salt samples) and 5.13 (gas samples) being 

other than zero. If w e  could write an equation f o r  t he  amount of noble 

metals associated with the  liquid-gas in te r face ,  we could compare t h e  

measured concentrations from f u e l  sa l t  and gas phase samples t o  t h i s  

quantity '  and possibly make a s igni f icant  observation. 

t h i s  was derived i n  Sect. 4.2.10 (Eq. [27)).This equation i s  t h e  r e s u l t  of 

a rate balance around the  en t i r e  gas phase of t he  f u e l  loop where the  g a s ,  

phase is  defined t o  include t h e  liquid-gas interfaces .  It considers t he  

c i r c d a t i n g  bubbles and t h e  gas phase of t he  pump bowl and a l l  t h e i r  

respective in te r faces  t o  be w e l l  mixed. There i s  no fundamental bas i s  

fo r  using concentration uni t s  i n  t h e  gas phase, so we w i l l  compute the  

t o t a l  mount of noble metals i n  t h i s  mixture. The sink terms f o r  noble 

metals i n  the  gas phase involve decay and an arb i t ra ry  rate constant which 

i s  a measure of t h e  r a t e  at which they migrate out of t he  gas phase as 

defined above. 

This conclusion w a s  

In  f a c t ,  it appears tha t  

This w a s  t h e  ra t iona l iza t ion  t o  explain the  slopes of t h e  

An equation t o  do 

7 

In  application w e  w i l l  evaluate the  undefined rate 
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constant by forcing t h e  slope of curves equivalent t o  those re fer red  t o  

above t o  equal zero. 

nificance can be assigned t o  these rate constants. For t h i s  analysis 

w e  w i l l  show only the  gas sample data from Run 19. These da ta  w i l l  be 

used, first , because they represent t he  l a rges t  number of samples (15) 
taken during a s ingle  run, second - because the data  points are t i g h t l y  

grouped around the  l i n e  (Figure 5.13) and t h i r d  - because the  slope of 

the curve (Fig,  5.13) i s  intermediate between the  slopes of a l l  the  

curves i n  Figures 5.10, 5 .11 and 5.13. 

Then we w i l l  see  i f  any reasonable physical s ig-  

The re su l t s  of t h e  calculation appear i n  Figure 5.14, where the 

measured noble metal i n  t h e  gas sample (dpm/sample) normalized t o  the  

t o t a l  amount theore t ica l ly  associated with the  liquid-gas in te r face  and 

gas phase phase (dpm) i s  p lo t ted  against  the noble metal half l i f e  f o r  

th ree  d i f fe ren t  values of t he  r a t e  constant. Each data  point i s  the 

geometric average of the  indicated r a t i o  f o r  a l l  gas samples taken during 

Run 19. The absolute value of t he  ordinate i s  of l i t t l e  o r  no s ign i f i -  

cance i n  t h i s  analysis since we are  only looking at t h e  slopes of t h e  

l i nes .  It i s  apparent tha t  no s ingle  r a t e  constant w i l l  f l a t t e n  out 

t h e  e n t i r e  curve. How then can we ra t iona l ize  these curves? Note 

tha t  the curve between the  'O%u and l2'%e points and t h e  I3*Te and "Mo 

points has a zero slope when the  rate constant of noble m e t a l s  i n  t h e  

pump bowl i s  about 0.01 hrs - l  (equivalent half  l i f e  approximately 3 days). 

If the  horizontal  l i n e  i s  extended when one would observe t h a t  more 

lo6Ru w a s  measured than t h i s  analysis would indicate .  

were present whereby noble metals could be s tored out of the  reactor  

system for  a few hundred days and then introduced i n t o  t h e  reactor  

system, the  measured Io6Ru concentration would be high. 

days t h e  shor te r  l ived  isotopes would have decayed a w a y ;  therefore ,  t h e  

slope of the r igh t  hand s l i d e  of t he  curve would not be s ign i f icant ly  

affected.  

and the dump tank. The other groups of gas and fuel salt  samples have 

been analyzed i n  t h i s  framework but t h e  r e s u l t s  w i l l  not be presented. 

If a mechanism 

In a f e w  hundred 

Likely suspects f o r  t h i s  mechanism would be t h e  overflow tank 

Let 

me summarize by saying tha t  they are more or  less consistent.  

curves i n  Figures 5.10, 5.11 and 5.13 can generally be r educed to  a l i n e  

with slope zero i f  a ha l f  l i f e  i n  the  pump bowl of a few days i s  imposed 

That i s ,  t h e  

. 
i 



67 

i 
t 

P 

10-6 

5 

2 

10-7 

5 

2 

10-8 

5 

2 

10-9 

5 

2 

lO”0 

ORNL-OWG 70-1 5020 

10 2 5 102 2 5 103 2 5 104 
NOGLE METAL HALF LIFE ( h r )  

FIGURE 5.14. COMPARISON OF MEASURED AMOUNT I N  GAS SAMPLE 
TO TOTAL THEORETICAL AMOUNT IN GAS PHASE INCLUDING INTERFACE 

WITH PARAMETERS OF AN ARBITRARY RATE CONSTANT FOR REMOVAL FROM SYSTEM 



68 

on them plus a long decay time of a few hundred t o  several  hundred days 

af'ter which they are re-introduced i n t o  the  reactor  system. 

days half  l i f e  may be associated w i t h  the  t i m e  required for  t h e  spray 

r ing  t o  splash ha l f  the  noble metals i n to  the  off-gas system as a 

mist. 

t e d  w i t h  the  overflow tank o r  w i t h  t he  frequency of draining and r e f i l l i n g  

fue l  salt  i n  the  fuel loop. 

The f e w  

The f e w  hundred t o  several  hundred day decay time may be associa- 

Conclusion. The slopes of the curves i n  Figures 5.10, 5.11 and 5.13 
can be explained i n  terms of reasonable physical phenomena i n  t h e  E R E .  

The physical phenomena have as t h e i r  foundation t h e  thes i s  t h a t  noble 

metals migrate and adhere t o  liquid-gas interfaces .  

5.7 Miscellaneous Noble Metal Observations 

5.7.1 Laminar Flow Core Surveillance Sample 
Following R u n  18, t h e  regular core surveil lance specimen fixutre 

(Fig. 2 .4 )  w a s  removed and a spec ia l  t es t  f ix tu re  w a s  ins ta l led .  

t h i s  w a s  t o  be the las t  chance t o  expose material t o  an operating molten- 

salt  reactor  core, a large number of spec ia l  experiments w a s  incorporated 

i n  t h i s  assembly, many of which were not d i r ec t ly  r e l a t ed  t o  f i s s ion  

product deposition. 

R e f .  38. 
t i o n  is  i l lustrated i n  Figure 5.15. 
flow i n  a t h i n  annular flow region, the outside surface being graphite 

and the  inside surface being Hastelloy-N. 

Since 

The e n t i r e  assembly is  described i n  d e t a i l  i n  

One of t h e  elements t h a t  w a s  devoted t o  f i s s ion  product deposi- 

It w a s  designed t o  generate laminar 

Different surface roughnesses 

were a l so  incorporated as shown i n  the figure. 

w a s  twofold. 

w e r e  exposed t o  essent ia l ly  iden t i ca l  f l u i d  dynamic conditions, any 

difference i n  noble metal deposition would be a d i rec t  measurement of t h e  

s t ick ing  f rac t ion  of one surface r e l a t ive  t o  t h e  other ,  and second, t o  

note any e f f ec t s  of surface roughness. 

after R u n  20 when the MSRE w a s  permanently shut down, and the  noble metal 

deposition w a s  measured, 

The in ten t  of t h i s  t e s t  

F i r s t ,  s ince t h e  graphite and Hastelloy-N annular surfaces 

This sample fixture was removed 

t 

c 

L, 
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In  determining the  measured amount of noble metals on these surfaces ,  

the Hastelloy-N core w a s  sectioned at the  surface roughness l i n e s  of 

demarkation. 

one f o r  each end. Similarly,  t he  graphite outer body w a s  cut i n t o  three  

sect ions,  one f o r  each surface roughness on the  outside. Note t h a t  t he  

inside has two surface roughnesses. 

were computed and compared t o  the  measured amounts i n  Figure 5.16. 
t h e  computed amount i s  f o r  t he  case where noble metals do not deposit on 

liquid-gas interfaces .  The estimated sal t  veloci ty  through the  annulus 

is  0.7 f t / s ec .  

t r ans fe r  coeff ic ient  throughout the  annulus of about 0.23 f’t/hr. The 

data points  on Figure 5.16 represent t h e  geometric averages of all determ- 

inat ions on the  Hastelloy-N and graphite annular surfaces.  The wings 

indicate  t h e  maximum and minimum data  points.  There w a s  considerable 

s c a t t e r  i n  t he  data.  

Two f i s s ion  product determinations were therefore  made, 

Theoretical  amounts of noble metals 

Again 

This w i l l  y i e ld  a Reynolds number of 206 and a mean mass 

It w a s  not possible t o  dis t inguish f l u i d  dynamic 

entrance e f f ec t s  and surface roughness e f f ec t s  from t h e  data. For laminar 

or  marginally turbulent f l o w  , the  surface roughness e f f ec t s  should have 

been minimal. Data from the  outside surface of t he  graphite body indi- 

cated t h i s  t o  be t rue .  The outside f l u i d  dynamic conditions are not 

known but  t he  f l o w  should have been e i t h e r  laminar or  just barely 

turbulent.  

tude of t he  ordinate with those from the  primary heat exchanger (Fig. 5.1) 
and the  Hastelloy-N and graphite core survei l lance specimens (Figures 

5.3 and 5.2, respect ively) .  The pr inc ipa l  observation i s  tha t  t he  s t ick ing  

f rac t ion  t o  graphite i s  apparently l e s s  than t h e  s t ick ing  f rac t ion  t o  

Hastelloy-N. Because of s c a t t e r  i n  t h e  data,  it is  d i f f i c u l t  t o  draw 

a firm value, but something i n  the  range of 0.1 - 0.6 would be i n  order. 

The curves i n  Figure 5.16 are generally consistent i n  magni- 

5.7.2 Noble Metal Distribution i n  the  MSRE 
It would be informative t o  determine t h e  noble metal d i s t r ibu t ion  

The r e su l t s  of t h i s  inventory calculat ion i n  t h e  reactor  f u e l  system. 

&e shown i n  Table 5.1. 
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Table 5.1 

Noble Metal Distribution i n  t h e  MSRE" 

Noble Metals on Heat Exchanger 
Surf aces 

Noble Metals on Other Hastelloy-N 
Surfaces i n  Fuel Loop 

40% 

50 

6% 

8 

Noble Metals on Graphite Surfaces 1 0.4 
i n  Core 
Noble Metals i n  Pump Bowl, Overflow 9 86 
Tank, O f f - G a s  System, e tc .  (by 
Difference) - - 

100% 100% 

*Reported as percent of t o t a l  inventory of noble metals i n  the  reactor  
system as time measurements were made. 

I n  determining t h i s  d i s t r ibu t ion ,  t he  measured amounts of noble metals 

on the  heat  exchanger were the  same values used t o  determine the  ordinate 

of Figure 5.1. 
Hastelloy-N surfaces i n  t ab le ,  w a s  determined by multiplying t h e  percent 

of inventory on t h e  heat exchanger by the  appropriate r a t i o  of products 

of mass transfer coeff ic ients  and surface area as tabulated i n  Table 

B-1. The measured amounts of noble metals on the  graphite surfaces w e r e  

t he  same values used t o  determine t h e  ordinate of Figure 5.2. Specifical-  

l y ,  t h e  data  were obtained from t h e  core surveil lance samples removed 

after run 14 (235U) and run 18 ( 2 3 ~ ) .  

t he  core surveil lance samples w e r e  then multiplied by a r a t i o  of mass 

t r ans fe r  coeff ic ients  (0.063/0.25) t o  convert them t o  concentrations on 

the  bulk graphite (see Appendix B) .  The difference between 100 percent 

and a l l  t h e  above sinks w a s  assumed t o  have deposited on bubbles and i s  

therefore  d is t r ibu ted  i n  an unknown manner between t h e  pump bowl, over- 

The percent of inventory of noble metals on other  

The measured concentrations from 

flow tank, off-gas system and dump tank. 

between the  235U and 233U runs i s  qui te  dramatic, but may not be as 

la rge  or as s igni f icant  as it appears. 

The difference i n  d is t r ibu t ion  

Recall from Section 3.2 where the  
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gamma spectrometry of the heat exchanger i s  discussed, it w a s  pointed out 

t h a t  t h e  lower measured values were used f o r  noble metal deposition on 

t h e  heat  exchanger following run 19 (233U but  more of an average value 

w a s  used f o r  noble metal deposition following run 14 (235U). 

measured values following run 1 4  were weighted lower, then the  percent of 

inventory on the  heat exchanger and other Hastelloy-N surfaces i n  

Table 5.1 f o r  t h e  235U runs would be l e s s ,  and the  noble metals i n  the  

If the  

pump bowl would be higher. 

6. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

1. Noble metal f i s s ion  products migrate from the  f u e l  sa l t ,  where 

they are born, t o  t h e i r  various depositories i n  accordance w i t h  t h e  l a w s  

of mass t r ans fe r  theory. 

2. Each noble metal isotope migrates as a function of i t s  own con- 

centration i n  fue l  sa l t ,  and i s  not influenced by other  elemental species 

of noble metals, or even i so topic  species of the  same element. There are 

however second order effects(probab1y chemical) which must be considered, 

f o r  instance,  a chemical in te rac t ion  between Nb and graphite had t o  be 

resorted t o ,  i n  order t o  explain the  high 95Nb concentration found on the 

MSRE core surveil lance samples. 

3. The liquid-gas in te r face  (c i rcu la t ing  bubbles and the  f r e e  sur- 
face i n  t h e  pump bowl) apparently present a s tab le  surface fo r  noble m e t a l  

deposition , however, the effect ive s t ick ing  f rac t ion  t o  t h i s  in te r face  is  

considerably less than unity.  This observation should not be regarded as 

absolutely conclusive, ra ther  it is primarily a deduced phenomenon used 

t o  explain many of the  results i n  t h i s  analysis and many of the  quali ta- 

t i v e  observations from t h e  MSRE. 

4. Associated w i t h  t he  last  conclusion is  t h e  idea t h a t  noble metal 

f i s s ion  products and also reduced corrosion products attached t o  a l iquid- 

gas in te r face  have many of the propert ies  of an insoluble surface act ive 

material. 

however, used t o  suggest an explanation fo r  t he  dramatic differences i n  

MSRE operating charac te r i s t ics  between the'235U and 233U runs. 

Again , t h i s  idea should not be regarded as conclusive. It was  , 
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5 .  The s t ick ing  fract ion of noble metal f i s s ion  products t o  graphite 

i s  apparently less than t h e  s t ick ing  f rac t ion  t o  Hastelloy-N. 

Recommendations 

The fundamental questions are  - how does one extrapolate these results 

from the MSRE t o  a la rge  molten salt reactor  i n  a quant i ta t ive manner,and 

can one use noble metal migration t o  h i s  advantage i n  the  design of a 

reactor? 

f o r  c i rcu la t ing  helium bubbles t o  remove 135Xe. 

salt  c i rcu la t ing  pump wduld probably have a free l iqu id  surface associated 

with it t o  eliminate the need f o r  a packing gland. 

liquid-gas interfaces  associated with a la rge  reactor .  Presumably then, 

noble metals would migrate t o  these surfaces.  The amounts would be extreme- 

l y  d i f f i c u l t  t o  estimate because of uncertaint ies  i n  t he  s t ick ing  f rac t ion  

and other parameters. Then there i s  the  question of w h a t  happens t o  noble 

metals a f t e r  they reach these interfaces .  

quiescent , noble metals would accumulate and develop i n t o  a heat source. 

On t he  other hand, noble metals associated w i t h  c i rcu la t ing  bubbles may 

migrate by some mechanism i n t o  t h e  off-gas system and s e t t l e  out on 

various components there .  Noble metal sinks associated w i t h  liquid-gas 

interfaces  cannot be handled quant i ta t ively at t h i s  time. 

The conceptual design of a s ingle  f l u i d  1000 MW(e) MSBR ( 3 9 )  c a l l s  

In  addition, any molten 

There may be other 

If the  pump bowl i s  r a the r  

It i s  recommended then, that  noble metal migration be studied i n  a 

c i rcu la t ing  sal t  loop. 

ra ther  a loop b u i l t  fo r  some other  purpose could be used. 

(probably t h e i r  precursors) could be added t o  the salt i n  t r a c e r  amounts 

and t h e  following s tudies  made. 

A spec ia l  loop may not have t o  be b u i l t ,  but  

Noble metals 

1. Deposition on s o l i d  surfaces and correlat ion of r e s u l t s  with 

mass t r ans fe r  theory. 

2. Deposition on liquid-gas interfaces  and correlat ion of results 

with mass t r ans fe r  theory. 

3. S tab i l iz ing  e f fec ts  of noble metals ( f i s s ion  products and cor- 

rosion products) on bubble and foam interfaces .  

4. Effects of t he  noble metal chemical species. 

, 5. Effects of t he  chemical s t a t e  of the  salt .  

Lid 
F 

* 
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6 .  Various aspects of c i rcu la t ing  bubble mechanics when noble metals 

are  attached t o  t h e i r  surfaces,  such as 

a. Interact ion of bubbles with s o l i d  surfaces.  

b. Bubble dissolution - This probably r e su l t s  i n  a 

s m a l l  packet of noble metals associated again with 

t h e  salt.  

C. Bubble renucleation - The s m a l l  packet from above w i l l  

then probably serve as an excel lent  bubble renucleation 

s i te .  

7. Prototype t e s t i n g  of bubble sens i t ive  components proposed f o r  t he  

next generation molten salt  reactor  t o  estimate the deposition and fur ther  

migration of noble metals i n  these areas. 

These s tudies  would be accomplished w i t h  t r a c e r  quant i t ies  of noble 

metals. 

a function of the  gross amounts of noble metals and reduced corrosion 

products present ,  and we couldn't hope t o  properly simulate t h i s  i n  a c i r -  

crrlating loop. 

answer a l l  t h e  questions pertainiiig 20 noble metal migration i n  the 

reac tor ,  but it would cer ta in ly  lay  a good foundation. 

of noble m e t a l  migration would ult imately have t o  come from t h e  operation 

of the  reactor  i t s e l f .  

The behavior of t he  next generation reactor  would undoubtedly be 

Therefore, t h e  results of t he  proposed study wodd not 

The complete s tory  

V 
-. 

a 

- 
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APPENDIX A 

NOMENCLATURE 

! 

CS 

c: 
cs i 

CP" 

CPS 

P 

Cm 

0 

0 

I 

I O  

V 

t 

P 

YP 

Y 

A* 

x 
hera 

hhe 

hbub 

hm 

Agra 

Concentration of noble metal isotope i n  fue l  salt  (atoms/vol) 

Value of C at time zero S 

Concentration of noble metal isotope i n  fue l  s a l t  at l iquid-  
gas or  l iquid-sol id  in te r face  (atoms/vol) 

Concentration of t he  soluble precursor of t he  noble metal i n  
f u e l  salt  ( at oms /vel) 

Value of cP" at t i m e  zero 

Concentration of noble metal isotope on so l ids  surfaces 
(atoms /area)  

Value of C" at t i m e  zero 

Total  amount of noble metal isotope i n  gas phase of MSRE f u e l  
loop including liquid-gas interfaces  (atoms ) 

Value of I a t  time zero 

Volume of f u e l  s a l t  i n  f u e l  loop 

Time 

Reactor power l e v e l  (MW) 

Cumulative f i ss ion  y i e l d  of soluble precursor of noble metal 
isotope ( f r ac t ion )  ' 

Direct f i s s ion  y i e ld  of noble metal isotope ( f r ac t ion )  

Decay constant of soluble precursor of noble metal isotope 
(hrs-1) \ 

Decay constant of noble metal isotope (hrs'l) 

Mass t r ans fe r  coeff ic ient  t o  graphite i n  MSRE core ( f t / h r )  

Mass t r a n s f e r  coeff ic ient  t o  primary heat  exchanger ( f t / h r )  

Mass t r ans fe r  coeff ic ient  t o  c i rcu la t ing  bubbles ( f t / h r )  

Mass t r ans fe r  coeff ic ient  t o  s o l i d  surface of i n t e r e s t  ( f t / h r )  

Surface area of graphite exposed t o  fue l  sa l t  (ft 2 
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Ah" 

Abub 

X 

x 

hheat 

hmas  s 

d 

k 

D 

CP 

lJ 

P ~ 

I 

V 

Total surface area of Hastelloy-N i n  heat  exchanger exposed 
t o  f u e l  salt  ( f t 2 )  

Surface area of c i rcu la t ing  bubbles ( f t  2 ) 

Theoretical  r a t e  constant for  migration of noble metal 
isotope from fue l  sa l t  t o  a l l  surfaces exposed t o  fue l  salt- 
see text (hrs- l )  

Generalized rate constant fo r  t ransport  of noble metal isotope 
from gas phase of fue l  loop (including liquid-gas in te r faces)  
t o  off-gas system (hrs-1) 

Heat t rans  fer  coeff ic ient  (Btu/hr-ft2-OF ) 

Mass t r ans fe r  coeff ic ient  ( f t / h r )  

Equivalent diameter (ft) 

Thermal conductivity (Btu/hr-ft2-OF) 

Diffusion coeff ic ient  (ft 2 / h r )  

Heat capacity (Btu/lb-'F) 

V i s  cos i t y  ( lb / f t -hr  ) 

Density ( l b / f t  3 ) 

Velocity ( f t / s e c )  

LJ 
x 

. 

J 
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APPENDIX B 

EVALUATION OF MIGRATION PARAMETERS FOR THE MSRE 

Mass Transfer Parameters t o  Fuel Loop Surfaces 

It has been hypothesized i n  t h i s  report  that  noble metals migrate 

The physical and i n  the  MSRE i n  accordance with mass t r ans fe r  theory. 

chemical basis of this  hypotehsis are  presented i n  Section 4.1. 
being the  case,  conventional mass t r ans fe r  coeff ic ients  should control  t he  

migration from bulk sal t  t o  the  various surfaces.  These coeff ic ients  w i l l  

be evaluated by the heat transfer-mass t r ans fe r  analogy. For an excellent 

derivation of t h i s  analogy and assumptions involved, see Reference 40, 
Chapter 21. The essent ia l s  of t he  analogy s t a t e  t h a t  mass t r ans fe r  coef- 

This 

For 

f i c i e n t s  may be computed from conventional correlat ions f o r  heat t r ans fe r  

coeff ic ients  after the  following subs t i tu t ions  have been made. 

Heat Transfer Mass Transfer 

d hhe at hmass mass - - 
D subs t i t u t e  Nu k Nu = 

For 

For 

C l J  
subs t i t u t e  Sc = k- 

PD 
Pr = + 

subs t i tu te  Re = PdV Re = - 
lJ lJ 

The analogy ,,olds t r u e  f o r  any flow geometry and fo r  laminar o r  tuidulent  

flow. 
Boelter equation f o r  turbulent flow as follows : 

Ey way of example we may apply these subs t i tu t ions  t o . t h e  Dittus- 

0.8 C l~ 0.4 
heat = 0.023 k p d v  -g ( ) (%) For heat  t r ans fe r  h 

lJ 

0.8 0.4 
= 0.023 (e) (k) mass For mass t r ans fe r  h 

lJ 

The MSRE fue l  salt  loop was divided i n t o  major regions. The mass 

t r ans fe r  coeff ic ient  f o r  each of these regions was estimated using 

accepted heat  t r ans fe r  coef f ic ien t  correlat ions and the  analogy above. 

Results are l i s t e d  i n  Table B-1. 

i 
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Table B-1 

Mass Transfer Parameters f o r  MSRE Fuel Loop 

Mass Transfer" Surface 
Coefficient Area 

( f t /h r )  ( f t 2 )  

Heat Exchanger (Shel l  s ide)  0.55 31 5 
Fuel Loop Piping, Core and Pump 1.23 71 
Volute 

Core Wall Cooling Annulus 0.51 154 
Core Graphite (Exposed t o  s a l t )  0.063 1465 
Miscellaneous (Pump Impeller , Core 
Support Grid, e t c .  ) 10 Percent 
of Summation of Above Product 

Summation of Products 

* I  

173 
87 

78 
92 

43 

- 
473 

*Physical propert ies  from Table 2.1. Diffusion coef f ic ien t  of noble metals 
i n  fue l  sal t  estimated t o  be 5.1 x 10-5 f t z /h r  with no d is t inc t ion  between 
chemical species.  

Mass Transfer Parameters t o  Circulating Bubbles 

In  Section 3.3 it w a s  noted t h a t  t he  void volume of bubbles c i r -  

culat ing with the  fuel salt w a s  estimated t o  be i n  t he  range of 0.02 per- 

cent t o  0.045 percent during the  235U operation and i n  t h e  range of 0.5 

percent t o  0.6 percent during t h e  23%J operation. The bubble diameter i s  

not known, but estimates from various ind i rec t  observations would put t he  

diameter somewhere between 0.001 and 0.010 i n .  We W i l l  use a mean value 

of 0.005 in .  

determine the  mass t r ans fe r  coeff ic ient  t o  bubbles c i rcu la t ing  with a 
turbulent ly  flowing f lu id .  (41) This program has not ye t  been completed, 

but i n i t i a l  information indicates  a mass t r ans fe r  coef f ic ien t  t o  c i rcu la t ing  

bubbles of about 5.0 f%/hr i s  a reasonable value. Using mean values of 

t he  above ranges of void fract ions and a fue l  salt volume i n  t h e  fue l  loop 

of 70.5 f t3,  w e  compute the  mass t r ans fe r  parameters i n  Table B-2. 

A program i s  underway at  Oak Ridge National Laboratory t o  
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Table B-2 

LI 

i 

Mass Transfer Parameters t o  Circulating Bubbles 

Mass Transfer Surface 
Coefficient A r e  a Product 

( f t / h r )  ( f t 2 )  ( f t3/hr  

During 235U Runs 5 .o 345 1725 

During 233U Runs 5.0 5581 27,900 

Mass Transfer Parameters t o  the  Core Surveillance Specimens 

The complexity of t he  f l u i d  dynamic conditions i n  t h i s  region has been 

discussed b r i e f l y  i n  Section 3.2. 

2.4 shows, t h e  rectangular graphite specimens are packed together t o  form 

a ra ther  complicated f l u i d  dyanmic arrangement featur ing both inside and 

outside corners. Adjacent t o  each major graphite surface and almost 

touching it are the  Hastelloy-N t e n s i l e  specimens and dosimeter tube. 

The t e n s i l e  specimens are par t icu lar ly  d i f f i c u l t  t o  analyze because they 

form a large number of f l u i d  entrance and e x i t  regions f o r  themselves and 

t h e  adjacent graphite.  

t r ans fe r  coeff ic ient .  

pa r t  of t h e  t e n s i l e  specmens t o  the  graphite (about 0.040 i n . )  might be 

expected t o  loca l ly  stagnate the  fuel sal t .  This e f f ec t  would tend t o  

decrease t h e  mass t r ans fe r  coeff ic ient  i n  the  affected region. F ina l ly ,  

t h e  e n t i r e  sample assembly i s  enclosed i n  a perforated basket. 

i n t en t  of t he  basket i s  t o  allow f o r  cross flow, but it a lso  contributes 

t o  t h e  uncertainty of f u e l  sa l t  veloci ty  past  t h e  sample. The perforations 

a l so  generate an unknown amount of turbulence i n  t h e  sal t ,  All these f l u i d  

dynamic complications were a necessary result of incorporating a large 

number of d i f fe ren t  kinds of samples (both graphite and metal) f o r  d i f fe r -  

ent  purposes i n t o  a ra ther  confined volume. 

when t h e  sample s t a t ion  w a s  b u i l t ,  t h e  necessity of being able t o  accurate- 

As  t h e  cross sec t iona l  v i e w  i n  Figure 

This e f f ec t  would be expected t o  increase t h e  mass 

On the  other hand, t he  close proximity of t h e  wide 

The 

I should a l so  point out t h a t  

l y  estimate mass t r ans fe r  coeff ic ients  w a s  not f u l l y  realized. 

veloci ty  i n  t h e  sample s t a t ion  has been estimated t o  be about 2 f t / s e c ,  

pa r t ly  by ind i rec t  measurements and pa r t ly  by estimate. The uncertainty 

could be as much as 25 percent. 

region between the  samples and perforated basket,  and based on a l l  sample 

The salt - 
i 

The equivalent diameter of t he  annular 

hd 
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components exposed t o  salt  i s  about 0.62 in .  

based on these values , i s  about 3000. 

marginally turbulent.  

confining nature of t h e  inside corners formed .by the  graphi te ,  and the  zones 

between the  Hastelloy-N samples and graphite surfaces would tend t o  make 

the flow laminar. Using the  usual re la t ionships  fo r  heat  t r ans fe r  coef- 

f i c i e n t s  and applying the  heat-mass t r ans fe r  analogy, w e  would compute an 

overa l l  mass t r ans fe r  coeff ic ient  of 0.31 ft /hr f o r  turbulent flow and 

0.077 f t / h r  fo r  laminar flow i n  t h i s  region. 

w i l l  pick an intermediate value of 0.25 f t / h r  fo r  t he  mass t r ans fe r  coef- 

f i c i e n t  t o  both the  graphite and Hastelloy-N specimens. 

i n  t h i s  number i s  high, probably more s o  for  the  Hastelloy-N than fo r  t he  

graphite.  

The Reynolds Number then, 

This implies t h a t  t he  flow i s  only 

This being the  case, one might expect t h a t  the  

I n  t h i s  analysis then, we 

The uncertainty 

Noble Metal Fission Product Parameters 

Table B-3 lists the  noble metal (and precursor) y i e ld  and ha l f  l i f e  

quant i t ies  during the  23% runs, and Table B-4 l i s ts  those parameters 

during the  235U runs , used i n  t h i s  analysis.  

Table B-3 

Noble 
Metal 

l o  3Ru 
5Ru 

lo6Ru 

9 9 ~ ~  

1 2 5 a  
127% 

12 9mTe 
1 3 l y e  
32Te 

9 5Nb 

Noble Metal Fission Product Parameters (233U R u n s )  

Cumulative Yield* 
of Precursor 

% 
4.89 
2.00 
0.706 
0.438 
0.0839 
0.58 
0.71 
0.441 
4.43 
6.00 

Direct Yield 
of Noble Metal 

% 
0.0 
0.0 
0.0 
0.0 
0 .o 
0.0 
0.0 
0.0 
0.0 
0.0 

H a l f  Life 
of Precursor 

2.4 min 
1.2 min 
9 min 
<1 min 
%9 days 
1.9 h r s  
4.6 hrs  
23 min 
2.1 min 
65 days 

H a l f  Life 
of Noble Metal 

66.5 hrs  
39.7 days 
4.45 h r s  
1.01 y r s  
2.0 y r s  
91 h r s  
37 days 
30 h r s  
77 h r s  
35 days 

*Based on the  following Fission Distribution 

Component 233u 235u 239Pu 
Percent of Fissions 93.2 2.3 4.5 
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Table B-4 

' , -  

I $  

m 

Noble Metal Fission Product Parameters (235U Runs) 

Cumulative Yield Direct Yield 
Noble of Precursor of Noble Metal Half L i f e  Half L i f e  
Metal - 5 % of Precursor of Noble Metal 

9 9 ~ ~  6.06 0.0 2.4 min 66.5 h r s  

' 3Ru 3.00 0.0 1.2 min 39.7 days 

lo6Ru 0.39 0.0 c1 min. 1.01 y r s  

9mTe 0.71 0.0 4.6 hrs  37 days 

' 32Te 4.71 0.0 2 . 1  min 77 h r s  

9 5Nb 6.22 0.0 65 days 35 days 

Time Constant fo r  Noble Metals i n  Fuel Sa l t  

In  Section 4.2 w e  derived an expression for  Cs ( the  noble metal con- 

centration i n  fue l  s a l t )  where the  fue l  loop i s  considered t o  be a well 

s t i r r e d  pot.  For t h i s  assumption t o  be adequate, t he  reside: -e t i m e  

of noble metals i n  fuel salt must be greater  than t h e  c i r c u i t  time of salt  

ai*ound the  fue l  loop (%25 seconds). The r a t e  constant i s  defined as 

With t h e  parameters l i s t e d  i n  Tables B-1 and B-2, w e  can compute t h e  t i m e  

constants involved and they are l i s t e d  i n  Table B-5. The value of X i n  
a l l  cases i s  negl igible  s o  t h e  value of X is  t h e  same f o r  a l l  noble metal 

isotopes.  

t he  235U runs , t he  w e l l  s t i r r e d  pot assumption i s  adequate. 

apparently not adequate during the  23%J runs. 
t ab l e  assume t h e  s t ick ing  f rac t ion  of noble metals t o  bubbles of unity.  

I n  Section 5.2 w e  deduced t h a t  t he  e f fec t ive  s t ick ing  f rac t ion  t o  bubbles 

In t h e  case of fue l  sa l t  with no bubbles and fue l  salt during 

It i s  

However, valves i n  t h i s  

i s  considerably less than unity 'and a value of 0.1 - 0.2 i s  suggested. 

If a s t ick ing  f rac t ion  t o  bubbles of 0.1 i s  assumed, then the  noble metal 

ha l f  l i f e  i n  f u e l  sa l t  during the  23% runs becomes 54 seconds. 

indicates  t h e  w e l l  stirred pot assumption i s  adequate i n  a l l  cases. 

This 
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Table B-5 

Time Constants of Noble Metals i n  Fuel Sa l t  

X H a l f  Life i n  Sa l t  
(hrs-1) (set) 

31.2 80 
Fuel Sa l t  During the  233U Runs 402 6.2 

Fuel Sa l t  with no Bubbles 6.7 370 

Fuel Sa l t  During the  235U Runs 

c 

' b  
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