

Thermochemical Production of Hydrogen from Solar and Nuclear Energy

Presentation to the Stanford Global Climate and Energy Project

14 April 2003

Ken Schultz General Atomics San Diego, CA

Hydrogen production requires energy

- Hydrogen is an energy carrier, not an energy source; its production requires energy
- A Hydrogen Economy only makes sense if hydrogen is produced with sustainable, non-fossil, non-greenhouse gas energy
 - Solar and Nuclear (fission and in the long term fusion)
- Hydrogen can be produced from water using thermal energy
 - Electric power generation → Electrolysis
 - Proven technology
 - Overall efficiency ~24% (LWR), ~36% (Hi T Reactors)
 (efficiency of electric power generation x efficiency of electrolysis)
 - Heat → Thermochemical water-splitting
 - Net plant efficiencies of up to ~50%
 - Developing technology
 - Electricity + Heat → High temperature electrolysis or Hybrid cycles

Thermochemical water-splitting

- A set of coupled, thermally-driven chemical reactions that sum to the decomposition of water into H₂ and O₂
 - All reagents returned within the cycle and recycled
 - Only high temperature heat and water are input, only low temperature heat, H₂ and O₂ are output
- High efficiency is possible at high temperature
- A developing technology
 - Explored extensively in the 1970s
 - Numerous possible cycles identified and explored
 - Never commercialized

DOE NERI project evaluated thermochemical cycles

- GA/SNL/UoK reviewed world literature
 - 822 references, 115 unique thermochemical cycles
- Screened these and selected 25 cycles for detailed evaluation
 - Screening: Suitability for coupling to a nuclear heat source
 - Evaluation: Chemical thermodynamics, engineering block flow diagrams
- Identified the Sulfur-Iodine (S-I) as best suited for hydrogen production from a nuclear heat source
 - Higher efficiency, easier handling
 - France, Japan have also selected the S-I cycle (or "I-S cycle")

Ref.: Brown, et al, AIChE 2002

The S-I cycle is best suited to nuclear production of H₂

Invented at GA in 1970s

- Serious investigations for nuclear and solar
- Chemistry reactions all demonstrated
- Materials candidates selected and tested

Advantages:

- All fluid continuous process, chemicals all recycled; no effluents
- H₂ produced at high pressure 22 84 atm.
- Highest cited projected efficiency, ~50%

• Challenges:

- Requires high temperature, ≥800°C
- Must be demonstrated as a closed loop under prototypical conditions

Sulfur-IodineThermochemical Water-Splitting Cycle

The S-I cycle is a thermally-driven chemical process

Follows the rules of chemistry and thermodynamics (Carnot)

High predicted efficiency: ~50% at 900°C

High temperature increases efficiency

Estimated S-I process thermal-to-hydrogen energy efficiency (HHV)

- Process is coupled to nuclear heat source by an intermediate loop with 2 heat exchangers ~50°C \(\Delta \text{T} \)
- Earlier studies used 827°C, achieved 42% efficiency
- >50% efficiency requires>900°C peak process T
- Reactor outlet T ≥ 950°C desired

We completed the S-I process design

NH2

Nuclear Hydrogen

- Used chemical process design code Aspen Plus
- Designed the three main chemical process systems
 - Prime or Bunsen reaction $(2H_2O + SO_2 + I_2 \rightarrow H_2SO_4 + 2HI)$
 - Sulfuric acid decomposition
 (2H₂SO₄ → 2SO₂ + 2H₂O + O₂)
 - Hydrogen iodide decomposition
 (2HI → I₂ + H₂)

600 MWt H ₂ -MHR										
Pro	cess Param	eters								
Material Flow rate Inventory										
	tons/day tons									
H ₂	H ₂ 200 2									
H ₂ O	H ₂ O 1,800 40									
H ₂ SO ₄	H ₂ SO ₄ 9,800 100									
	203,200	2,120								

- We estimate high efficiency (52% at 900°C) and reasonable cost (~\$250/kWt)
 - Benefit of high reactor outlet temperature important

Ref. Brown, et al AIChE 2003

- Experimental verification is needed
 - HI, H₂O, I₂ Vapor-Liquid Equilibrium data needed
 - Confirmation of HI Reactive Distillation analysis important, may allow further cost savings

SNL evaluated candidate nuclear reactors for thermochemical water-splitting

- SNL evaluated 9 categories:
 - PWR, BWR, Organic, Alkali metal, Heavy metal, Gascooled, Molten salt, Liquidcore and Gas-core
 - Assessed reactor features, development requirements
- Current commercial reactors are too low temperature
- Helium, heavy metal, molten salt rated well; helium gascooled most developed
- Selected Modular Helium Reactor as best suited for thermochemical production of hydrogen

H₂-MHR

The Modular Helium Reactor solves the problems of first generation reactors

- IH2 Clear Hydrogen
- High temperature all-ceramic fuel is passively safe
- Allows high coolant temperatures 850 950°C
- Coupled to gas turbine at 850°C: GT-MHR, 48% efficiency
- Coupled to S-I water-splitting at 950°C: Hydrogen at 52% efficiency
- Reduces cost and minimizes waste
- Proliferation resistant
 - Opens a new opportunity for nuclear power

Inherent reactor characteristics provide passive safety

- Helium gas coolant (inert)
- Refractory fuel (high temperature capability)
- Graphite reactor core (high temperature stability)
- Low power density, modular size (slow thermal response)
- Demonstrated technologies from 7 prototypes world-wide over 40 years
- ... EFFICIENT PERFORMANCE
 WITH PASSIVE SAFETY

Nuclear-produced H₂ must be economical to compete

NH2 Nuclear Hydrogen

- Start with GT-MHR cost estimates
 - Subtract cost of gas turbine system and generator
 - Add estimate of "VHTR" cost premium for 950°C -- +23%
 - Add cost of circulators, heat exchangers, intermediate loop, hydrogen plant and I₂ inventory

	GT-MHR	MHR	VHTR	Intermed	S-I	H2-VHTR
	Electric	Process	Process	Loop	Hydrogen	H2 Plant
	Plant	Heat Plant	Heat Plant		$Plant + I_2$	
Capital Cost, \$/kW _t	468	326	371	43	297	711
Operating Cost, \$/MW _t h	5.0	4.0	4.9	0.1	3.3	8.3

Cost of H ₂ : \$/kg	H2-MHR	H2-VHTR
Public utility	\$1.52	\$1.42
Regulated utility	\$1.69	\$1.57
Unregulated utility	\$2.01	\$1.87

Nuclear-produced hydrogen will be economic

- H2-VHTR could produce H₂ at ~\$1.40/kg
- Meets steam reformation of natural gas H₂ cost at ~\$6.30/MBtu
- \$1/MBtu higher natural gas cost or \$100/ton CO₂ capture and sequestration cost could each add 20¢/kg of SMR H₂, or \$25/ton oxygen sale could subtract 20¢/kg of nuclear H₂
- Nuclear production of H₂ would avoid fossil fuels and CO₂ emissions without economic penalties

Figure 1 Cost of hydrogen for technology leaders—with CO₂ costs

Figure courtesy of ERRI

.... and CO₂ emission-free

Nuclear Production of H₂ Appears Attractive

NH2

Nuclear Hydrogen

- A large and growing market for H₂ exists that nuclear energy could serve
 - H₂ for oil refineries is the likely first market and can provide a bridge to the future Hydrogen Economy
- The Modular Helium Reactor coupled to the Sulfur-Iodine water-splitting cycle is an attractive system:
 - High efficiency, reasonable cost, passive safety
- Estimated costs of ~\$1.40/kg could compete with H₂ from natural gas today if O₂ can be sold
 - Increasing cost of natural gas or CO₂ costs will give nuclear increasing cost advantage

Nuclear production of hydrogen can be the enabling technology for the Hydrogen Economy

Effort will be needed to achieve economic hydrogen from nuclear energy...

- The first steps have begun:
 - Demonstrate laboratory scale SI process operation (I-NERI)
 - Conceptual design of H₂-MHR and Intermediate Loop (NERI)
 - Measure needed chemical data (SNL-L, CEA)
 - Tasks could be completed in 3 years
- Next, build a ~30 MWt Pilot Plant (~10 tons/day of H₂)
 - Design, build and operate in ~4 years for ~\$75-100M
 - Operation with fossil-fueled simulated nuclear heat source
- Then, build a 600 MWt (200 t/d) H₂- Nuclear Demo Plant
 - Demonstration of "Nuclear Hydrogen" by ~2015
 - ~\$350M + reactor

... but the path forward appears clear

Solar Production of Hydrogen is an appealing goal

- Solar receivers can deliver high temperature
 - NREL/U.Colorado demonstrated 51% collection efficiency at 2000°C in the process fluid for thermal cracking of methane
- Solar diurnal cycle is a real limitation
 - ~ 8 hours of useful energy per day
 - 8/24 = 33% duty cycle
 - Capital equipment only earning revenue 1/3 of time
 - Hydrogen unit cost increased 3 x
- Solar can deliver higher temperatures than nuclear -can we use it effectively to off-set the low duty cycle?

Photos of NREL Solar Furnace

Preliminary estimates of Solar thermochemical hydrogen production are encouraging

- IH2

 lear Hydrogen
- Start with nuclear-matched S-I cycle coupled to solar receiver
 - NREL heliostat/collector: 1 kW/m², 51% capture, \$130/m², 8 hr/day
 - Lower capital cost than nuclear, but low duty cycle hurts
- Increase temperature to maximum S-I can use 1100°C
 - NREL advanced heliostat/collector: \$75/m²
 - Better but doesn't use the full temperature potential of solar
- Assume hypothetical thermochemical cycle at 2000°C
 - Assume same 79% of Carnot efficiency as S-I → 65% heat to H₂ efficiency
 - Assume same \$/kWt capital cost as S-I
- While the assumptions are unproven, the result is interesting

Process	Nuclear S-I	Solar S-I	Solar Hi T S-I	V Hi T Cycle
Temperature °C	900	900	1100	2000
Efficiency - Heat to H ₂	52%	52%	56%	65%
Hydrogen cost, \$/kg	1.42	3.45	2.50	2.15

Evaluation of solar water-splitting is needed

NH2

Nuclear Hydrogen

- We have proposed to do serious investigation of solar thermochemical cycles
 - Update and search our database for cycles well-suited to solar:
 - Develop solar screening criteria
 - Higher temperature cycles possible for higher efficiency
 - Match receiver characteristics to chemical reactions
 - Search for diurnal accommodation to improve capital utilization
 - Do conceptual designs for interesting cycles and systems
 - Build and test prototype solar receivers/chemical reactors
- We are hopeful of DOE support starting in FY'03

Barriers to nuclear thermochemical watersplitting and research opportunities NH2

BARRIERS

Reactor

- Public antipathy to nuclear energy
- Development and demonstration of MHR is needed
 - Demonstrate cost and performance
 - Mitigate investment risk

S-I Process

- Demonstration of S-I cycle
 - Demonstrate cost and performance

System economics

Fossil fuels with no environmental costs dominate the market

OPPORTUNITIES

Study of public perceptions and public education

Nuclear Hydrogen

- Development and demonstration
 - Fuel fabrication and testing
 - Detailed reactor design
 - Construction of a Demo plant
- S-I Process validatiom
 - Measure chemical data
 - Demonstrate process
 - Verify materials
- Study cost/value of CO₂ Cap&Seq
 - Can sustainable sources of H₂ compete?
 When?

Barriers to solar thermochemical watersplitting and research opportunities NH2

BARRIERS

Solar collector

- Need low cost & high efficiency
 - High collection efficiency
 - High energy retention
 - Low maintenance, high reliability

Process

- Need solar-matched process
 - High temperature/efficiency
 - Match to solar receiver geometry?
 - Diurnal accommodation
 - Demonstrate cost and performance

System economics

Economics of high temperature solar are challenging

OPPORTUNITIES

- Develop efficient, effective collectors
 - Selective filters, tailored emissivities

Nuclear Hydrogen

- "Smart" systems for alignment
- Value engineering of system
- Process selection and validation
 - Identify and select solar-matched cycle
 - Measure chemical data
 - Demonstrate process
 - Verify materials
- Study system economics
 - Can renewable sources of H₂ compete?
 When?

Thermochemical Hydrogen Production from Solar and Nuclear Energy

NH2
Nuclear Hydrogen

- Thermochemical water-splitting promises efficient hydrogen production from heat
- Requires high temperatures
- For nuclear, the Sulfur-lodine cycle matched to the Modular Helium Reactor appears attractive and economic

- For solar, process matching and selection is needed
- Thermochemical water-splitting is developmental opportunities for R&D are ample
- Thermochemical production of hydrogen can be part of a sustainable energy future

BACKUP VIEWGRAPHS

Hydrogen is the Ideal Replacement for Fossil Fuels

NH2

Nuclear Hydrogen

Hydrogen can reduce CO₂ emissions and dependence on fossil fuels

- No greenhouse gases. Hydrogen produces only water as the "waste product"
- In a fuel cell, hydrogen can get twice the efficiency as a gasoline engine
- Hydrogen is ready to be a viable option
 - Research base available from DOE/EERE program for hydrogen use, storage and distribution
- One issue: where to get the hydrogen?
 - Hydrogen is an energy carrier, not an energy source
 - Most hydrogen chemically bound as water, carbohydrates or hydrocarbons
 - Energy is required to separate H from oxygen or carbon

The Hydrogen Economy will need a lot of hydrogen

- US use of hydrogen is now 11 million tons/y (48 GWt)
- 95% produced by Steam Reformation of Methane
 - Consumes 5% of our natural gas usage
 - Not CO₂-free: releases 74 M tons of CO₂/y
- Most is used in fertilizer, chemical and oil industries
- ~10%/y growth → X 2 by 2010,
 X 4 by 2020
- Hydrogen Economy will need X 18 current for transportation X 40 for all non-electric

Quantifiable screening criteria were developed and applied...

- Each cycle was given a numerical score based on
 - Number of chemical reactions
 - Number of chemical separations required
 - Number of elements
 - Elemental abundance of least abundant element
 - Relative corrosiveness of process solutions
 - Degree to which process is continuous and flow of solids is minimized
 - Degree to which maximum process temperature is appropriate to advanced high temperature nuclear reactor
 - Number of published references to the cycle
 - Degree to which the cycle has been demonstrated
 - Degree to which good efficiency and cost data are available
- Go-No go criteria were applied
 - Environmental Health and Safety Mercury cycles eliminated
 - Excessive maximum temperature Cycles above 1600°C eliminated
 - Thermodynamically unfavorable ∆G/RT > 50 kcal/mole

... reducing the number of cycles to 25

The top 25 thermochemical cycles for nuclear energy

NH2

Nuclear Hydrogen

Cycle	Name	T/E*	T °C	Reaction	F^{\dagger}
1	Westinghouse [12]	T E	850 77	$2H_2SO_4(g) \rightarrow 2SO_2(g) + 2H_2O(g) + O_2(g)$ $SO_2(g) + 2H_2O(a) \rightarrow H_2SO_4(a) + H_2(g)$	1/ 1
2	Ispra Mark 13 [13]	T E	850 77	$2H_2SO_4(g) \rightarrow 2SO_2(g) + 2H_2O(g) + O_2(g)$ $2HBr(a) \rightarrow Br_2(a) + H_2(g)$	1/ 1
		T	77	$Br_2(1) + SO_2(g) + 2H_2O(1) \rightarrow 2HBr(g) + H_2SO_4(a)$	1
3	UT-3 Univ. of Tokyo [8]	T T	600 600	$2Br_2(g) + 2CaO \rightarrow 2CaBr_2 + O_2(g)$ $3FeBr_2 + 4H_2O \rightarrow Fe_3O_4 + 6HBr + H_2(g)$	1/ 1
		T	750	$CaBr_2 + H_2O \rightarrow CaO + 2HBr$	1
		T	300	$Fe_3O_4 + 8HBr \rightarrow Br_2 + 3FeBr_2 + 4H_2O$	1
4	Sulfur-Iodine [14]	T T	850 450	$\begin{array}{l} 2H_2SO_4(g) \rightarrow 2SO_2(g) + 2H_2O(g) + O_2(g) \\ 2HI \rightarrow I_2(g) + H_2(g) \end{array}$	1/ 1
		T	120	$I_2 + SO_2(a) + 2H_2O \rightarrow 2HI(a) + H_2SO_4(a)$	1
5	Julich Center EOS [15]	T T	800 700	$2\text{Fe}_3\text{O}_4 + 6\text{Fe}_3\text{O}_4 \rightarrow 6\text{Fe}_2\text{O}_3 + 6\text{SO}_2 + \text{O}_2(g)$ $3\text{Fe}_3\text{O}_4 + \text{H}_2(g) \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2(g)$	1/ 1
		T	200	$Fe_2O_3 + SO_2 \rightarrow FeO + FeSO_4$	6
6	Tokyo Inst. Tech. Ferrite [16]	T		$2MnFe_2O_4 + 3Na_2CO_3 + H_2O$ → $2Na_3MnFe_2O_6 + 3CO_2(g) + H_2(g)$	1
		T	600	$6Na_2CO_3 + O_2(g)$	1/
7	Hallett Air Products 1965 [15]	T E	800 25	$2Cl2(g) + 2H2O(g) \rightarrow 4HCl(g) + O2(g)$ 2HCl \rightarrow Cl ₂ (g) + H ₂ (g)	1/ 1
8	Gaz de France [15]	T T	725 825	$2K + 2KOH \rightarrow 2K_2O + H_2(g)$ $2K_2O \rightarrow 2K + K_2O_2$	1 1
		T	125	$2K_2O_2 + 2H_2O \rightarrow 4KOH + O_2(g)$	1/
9	Nickel Ferrite [17]	T T	800 800	$\begin{array}{c} \text{NiMnFe}_4\text{O}_6 + 2\text{H}_2\text{O} \rightarrow \text{NiMnFe}_4\text{O}_8 + 2\text{H}_2(g) \\ \text{NiMnFe}_4\text{O}_8 \rightarrow \text{NiMnFe}_4\text{O}_6 + \text{O}_2(g) \end{array}$	1/
10	Aachen Univ Julich 1972 [15]	T T	850 170	$2Cl2(g) + 2H2O(g) \rightarrow 4HCl(g) + O2(g)$ $2CrCl2 + 2HCl \rightarrow 2CrCl3 + H2(g)$	1/ 1
		T	800	$2\operatorname{CrCl}_{3} \to 2\operatorname{CrCl}_{2} + \operatorname{Cl}_{2}(g)$	1
11	Ispra Mark 1C [13]	T	100	$2\text{CuBr}_2 + \text{Ca}(\text{OH})_2 \rightarrow 2\text{CuO} + 2\text{CaBr}_2 + \text{H}_2\text{O}$	1/
		T T	900 730	$4\text{CuO(s)} \rightarrow 2\text{Cu}_2\text{O(s)} + \text{O}_2\text{(g)}$ $\text{CaBr}_2 + 2\text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + 2\text{HBr}$	2
		T	100	$Cu_2O + 4HBr \rightarrow 2CuBr_2 + H_2(g) + H_2O$	1
12	LASL- U [15]	T	25	$3CO_2 + U_3O_8 + H_2O \rightarrow 3UO_2CO_3 + H_2(g)$	1
		T	250	$3UO_2CO_3 \rightarrow 3CO_2(g) + 3UO_3$.1
		T	700	$6\text{UO}_3(s) \rightarrow 2\text{U}_3\text{O}_8(s) + \text{O}_2(g)$	1/
13	Ispra Mark 8 [13]	T T	700 900	$3MnCl_2 + 4H_2O \rightarrow Mn_3O_4 + 6HCl + H_2(g)$ $3MnO_2 \rightarrow Mn_3O_4 + O_2(g)$	1/
		T	100	$4\text{HCl} + \text{Mn}_3\text{O}_4 \Rightarrow 2\text{MnCl}_2(\text{a}) + \text{MnO}_2 + 2\text{H}_2\text{O}$	3/
14	Ispra Mark 6 [13]	T	850		1/
		T	170	2 3 2.0	1
		T	700	$2\operatorname{CrCl}_3 + 2\operatorname{FeCl}_2 \to 2\operatorname{CrCl}_2 + 2\operatorname{FeCl}_3$ $2\operatorname{FeCl}_2 \to \operatorname{Cl}_2(2) + 2\operatorname{FeCl}_2$	1
		T	420	$2FeCl_3 \rightarrow Cl_2(g) + 2FeCl_2$	1

Cycle	Name	T/E*	T °C	Reaction	F
					1/
15	Ispra Mark 4 [13]	T T	850 100	$2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g) \rightarrow 4\text{HCl}(g) + \text{O}_2(g)$ $2\text{FeCl}_2 + 2\text{HCl} + S \rightarrow 2\text{FeCl}_3 + \text{H}_2\text{S}$	1
		T	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(g) + 2\text{FeCl}_2$	1
		T	800	$H_2S \rightarrow S + H_2(g)$	1
16	Ispra Mark 3 [13]	T	850	$2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g) \rightarrow 4\text{HCl}(g) + \text{O}_2(g)$	1/
		T T	170 200	$2VOCl2 + 2HCl \rightarrow 2VOCl3 + H2(g)$ $2VOCl3 \rightarrow Cl2(g) + 2VOCl2$	1 1
17	I M 1 2 (1072) [12]	T		y 2-9 2	
17	Ispra Mark 2 (1972) [13]	T	100 487	$Na_2O.MnO_2 + H_2O \rightarrow 2NaOH(a) + MnO_2$ $4MnO_2(s) \rightarrow 2Mn_2O_3(s) + O_2(g)$	1/
		T	800	$Mn_2O_3 + 4NaOH \rightarrow 2Na_2O.MnO_2 + H_2(g) +$	1
10	Y		0.77	H ₂ O	1,
18	Ispra CO/Mn3O4 [18]	T T	977 700	$6\text{Mn}_2\text{O3} \rightarrow 4\text{Mn}_3\text{O4} + \text{O2}(g)$ $C(s) + \text{H}_2\text{O}(g) \rightarrow C\text{O}(g) + \text{H}_2(g)$	1
		T	700	$CO(g) + 2Mn_3O_4 \rightarrow C + 3Mn_2O_3$	1
19	Ispra Mark 7B [13]	T	1000	$2\text{Fe}_2\text{O}_3 + 6\text{Cl}_2(g) \rightarrow 4\text{Fe}_1 + 3\text{O}_2(g)$	3/3/
	•	T	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(g) + 2\text{FeCl}_2$	
		T T	650	$3FeCl2 + 4H2O \rightarrow Fe3O4 + 6HCl + H2(g)$ $4Fe2O4 + O2(e3) \rightarrow Fe3O2$	1/
		_	350	$4\text{Fe}_3\text{O}_4 + \text{O}_2(g) \rightarrow 6\text{Fe}_2\text{O}_3$	3/
		T	400	$4HCl + O_2(g) \rightarrow 2Cl_2(g) + 2H_2O$	
20	Vanadium Chloride [19]	T T	850 25	$2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g) \rightarrow 4\text{HCl}(g) + \text{O}_2(g)$ $2\text{HCl} + 2\text{VCl}_2 \rightarrow 2\text{VCl}_3 + \text{H}_2(g)$	1/ 1
		T	700	$2VCl_3 \rightarrow VCl_4 + VCl_2$	2
		T	25	$2VCl_4 \rightarrow Cl_2(g) + 2VCl_3$	1
21	Mark 7A [13]	T	420	$2\text{FeCl}_3(1) \rightarrow \text{Cl}_2(g) + 2\text{FeCl}_2$	3/
		T	650	$3\text{FeCl} + 4\text{H O(g)} \rightarrow \text{Fe O} + 6\text{HCl(g)} + \text{H (g)}$	1
		T T	350	$4\text{Fe}_3\text{O}_4 + \text{O}_2(g) \rightarrow 6\text{Fe}_2\text{O}_3$ $6\text{Cl}_2(g) + 2\text{Fe}_2\text{O}_3 \rightarrow 4\text{Fe}_3(g) + 3\text{O}_2(g)$	1/
		T	120	$Fe_2O_3 + 6HCl(a) \rightarrow 2FeCl_3(a) + 3H_2O(1)$	1
22	GA Cycle 23 [20]	Т	800	$H_2S(g) \rightarrow S(g) + H_2(g)$	
	G/1 Cycle 25 [20]	Ť	850	$2H_2SO_4(g) \rightarrow 2SO_2(g) + 2H_2O(g) + O_2(g)$	1/
		T	700	$3S + 2H_2O(g) \rightarrow 2H_2S(g) + SO_2(g)$	1/
		T	25	$3SO_2(g) + 2H_2O(1) \rightarrow 2H_2SO_4(a) + S$	1/
	*** ***	T	25	$S(g) + O_2(g) \rightarrow SO_2(g)$	1,
23	US -Chlorine [15]	T T	850 200	$2Cl2(g) + 2H2O(g) \rightarrow 4HCl(g) + O2(g)$ $2CuCl + 2HCl \rightarrow 2CuCl2 + H2(g)$	1
		T	500	$2\text{CuCl}_2 \rightarrow 2\text{CuCl} + \text{Cl}_2(g)$	1
24	Ispra Mark 9 [13]	Т	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(g) + 2\text{FeCl}_2$	3/
		Т	150	$3Cl_2(g) + 2Fe_3O_4 + 12HCl \rightarrow 6FeCl_3 + 6H_2O +$	1/
		Т	650	$O_2(g)$ $3\text{FeCl}_2 + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 6\text{HCl} + \text{H}_2(g)$	1
25	Ispra Mark 6C [13]	T	850	$2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g) \rightarrow 4\text{HCl}(g) + \text{O}_2(g)$	1/
		T	170	$2CrCl_2 + 2HCl \rightarrow 2CrCl_3 + H_2(g)$	1
		T	700	$2\operatorname{CrCl}_3 + 2\operatorname{FeCl}_2 \to 2\operatorname{CrCl}_2 + 2\operatorname{FeCl}_3$	1
		T	500	$2CuCl_2 \rightarrow 2CuCl + Cl_2(g)$	1
		Т	300	$CuCl+ FeCl_3 \rightarrow CuCl_2 + FeCl_2$	1

Detailed evaluation criteria were developed and applied

- Thermodynamic calculations were made for each chemical reaction
 - Cycles were eliminated if any reaction had a large positive Gibbs free energy that could not be performed electrochemically nor shifted by pressure or concentration
- Preliminary block flow diagrams were prepared for each cycle
 - Cycles were eliminated that required the flow of solids
 - Cycles were eliminated due to excess complexity
 - Cycles were eliminated which are not well matched to the characteristics of a high temperature reactor
- Hybrid cycles were eliminated due to scalability concerns
 - Hybrid cycles are inherently limited in size
 - All previous cost comparisons of hybrid and pure thermochemical cycles have indicated higher cost for hybrid cycles

The Sulfur-lodine cycle was selected

Section 1- Bunsen reaction and Chemical recycle

Section 2 - Sulfuric acid concentration and decomposition

Section 3 - HI Decomposition - Reactive distillation process

NH2

Nuclear Hydrogen

- Univ. of Aachen suggested for cost savings
- Use U. Aachen analysis
- High recycle to Section 1
 - ~ 5 to 1 recycle of HI
 - ~ 4-5 moles H₂O & I₂ per mole HI
- Lower cost with good efficiency

52% at 900°C vs. earlier 47%

23% cost savings 8%with I₂ inventory

The Helium Gas-Cooled Reactor is well-suited for H₂ production

Assessment of reactor concepts for Sulfur-Iodine thermochemical cycle

Coolant	Gas	Salt	Heavy Metal	Alkali Metal	Molten Core	PWR	BWR	Organic	Gas Core
Materials compatibility	Α	В	В	С	В	_	F	-	_
2. Coolant stability	Α	Α	Α	Α	В	_	_	F	_
Operating pressure	Α	Α	Α	Α	Α	F	1	-	
4. Nuclear issues	Α	Α	Α	В	В	_	1	_	_
5. Feasibility-development	Α	В	В	С	С	_	1	-	F
1. Safety	В	В	В	В	В	_	1	-	_
2. Operations	Α	В	В	В	С	_	_	_	
3. Capital costs	В	В	В	С	С				
4. Intermediate loop compatibility	Α	В	В	В	В	_	_	-	_
5. Other merits and issues	В	В	В	В	В	_	_	_	
Unweighted mean score (A=4.0)	3.67	3.30	3.33	2.87	2.80	N/A	N/A	N/A	N/A

Development cost trends relative to GCRs

	Materials	Fuel	Component	System	FabFacility	Total
Molten salt	+1	+1	+1	+2	0	+6
Heavy metal	+2	+2	+1	+1	+1	+7

... and needs the least development

CERAMIC FUEL RETAINS ITS INTEGRITY UNDER **SEVERE ACCIDENT CONDITIONS**

Pyrolytic Carbon Silicon Carbide **Porous Carbon Buffer**

Uranium Oxycarbide

TRISO Coated fuel particles (left) are formed into fuel rods (center) and inserted into graphite fuel elements (right).

PARTICLES

COMPACTS

FUEL ELEMENTS

Ceramic Fuel Retains Integrity Beyond Maximum Accident Temperatures

MHR Design has Passively Safe Decay Heat Removal

A. Normal - Using Power Conversion System

B. Active Shutdown Cooling System

C. Passive Reactor Cavity Cooling System

D. Passive Radiation & Conductive Cooling

The MHR is Passively Safe: Fuel temperatures remain below design limits during loss of cooling events NH2

PASSIVE DESIGN FEATURES ENSURE FUEL REMAINS BELOW 1600°C,
PREVENTING RELEASE OF RADIOACTIVITY.

ACTIVE SAFETY SYSTEMS NOT NEEDED

Preliminary H₂-MHR Capital Cost Estimates

NH2

Nuclear Hydrogen

Modular Helium Reactor Capital Costs Estimated "Nth of a kind" costs for 4x600MWt plant

		GT-MHR	PH-MHR	PH-MHR	Intermediate	S-I H2 Plant
		Elect ric Plant	Process Heat	Process Heat	Loops	Hydrogen
			Plant - 850°C	Plant - 950°C		Plant
		(4x286 MWe)	(4x600 MWt)	(4x600 MWt)	(2400 MWt)	(2400 MWt)
CCT	DIRECT COSTS	Yr 2002 M\$	Yr 2002 M\$	Yr 2002 M\$	Yr 2002 M\$	Yr 2002 M\$
20	LAND AND LAND RIGHTS	0	0	0		
21	STRUCTURES AND IMPROVEMENTS	132	132	132		
22	REACTOR PLANT EQUIPMENT	443	343	420		
23	TURBINE PLANT EQUIPMENT	91	0	0		
24	ELECTRIC PLANT EQUIPMENT	62	50	50		
25	MISCELLANEOUS PLANT	28	28	28		
	EQUIPMENT					
26	HEAT REJECTION OR S-I SYSTEM	33	0	0		417
	INTERM. LOOP CRC. & PIPING				73	
2	TOTAL DIRECT COST	789	553	630	73	417
	INDIRECT COSTS					
91	CONSTRUCTION SERVICES	83	58	66	8	44
92	HOME OFFICE ENGR AND SERVICES	25	18	20	2	13
93	FIELD OFFICE ENGR AND SERVICES	28	20	23	3	15
94	OWNER'S COST/ I2 INVENTORY	138	97	110	13	73 +119
9	TOTAL INDRECT COSTS	274	192	219	25	145 + 119
	BASE CONSTRUCTION COST	1063	745	850	98	681
	CONTINŒNCY	53	37	42	5	33
	TOTAL COST	1116	783	892	103	714
	\$ / kW	468/kWt	326/ kW t	371/kWt	43 /kWt	297/kWt

Economic estimates are encouraging

Capital recovery:

- IDC (3yrs, 7%), CRF 10.5% (public utility), 90% capacity factor
- \$(711 x 1.116 x 0.105) / 7.9 MW(t)-hr = \$10.6/MW(t)-hr

Operating cost:

- \$8.3 / MW(t)-hr
- Includes nuclear fuel cycle & waste disposal, water and O&M

Total cost:

- \$(10.6 + 8.3) = \$18.8/MW(t)-hr.
- 1 MW(t)-hr = 3600 MJ(t), At 52% heat-to- H_2 that's 1872 MJ(H_2)
- $1 \text{ kg H}_2 = 142 \text{ MJ}. 1872/142 = 13.2 \text{ kg/MW(t)-hr}$
- \$18.8/13.2kg = \$1.42/kg of H₂

The Fusion Applications study found products well-suited to fusion NH2

- Electricity
- Fissile fuel and tritium*
- Radioisotopes (esp. Co⁶⁰)*
- Fission waste burning*
- Synthetic fuels (hydrogen)
- District and process heat*
- Rare metals*
- Space propulsion
- *: Most require co-generation of electricity

A significant potential market for synfuels from fusion was projected NH2

- IH2 lear Hydrogen
- In developed countries, 30% of energy use is to generate electricity. 70% goes for transport and industrial needs.
- Gas Research Institute in 1972 projected the potential by 2000 for:
 - 1000 fusion plants to replace natural gas with hydrogen
 - 2000 fusion plants to replace fossil fuels for non-electric use
- The economics were challenging however:
 - Oil cost \$20/bbl, fusion heat source cost estimate \$850/kW_{th}
 - With 50% heat-to-hydrogen efficiency, fusion would be cheaper than oil at \$50/bbl....

The dream didn't come true — but the market is still there!

Direct processes appear interesting.

- Radiolysis uses radiation to break chemical bonds
 - $H_2O \rightarrow H_2 + 1/2O_2$
 - $CO_2 \rightarrow CO + 1/2O_2$; $CO + H_2O \rightarrow CO_2 + H_2$
 - Recombination, competing reactions, low densities limit fraction of energy captured to
 <10%
- Thermal spike chemistry uses neutron knock-on atoms to produce transient microscopic high temperature zones for non-equilibrium chemistry (2-5 eV, 10⁻¹⁰ s)
 - Need N~20-100 medium for energy transfer ≈ 5%
 - Fraction of fusion energy to medium ≈ 10% (90/10 Xe/H₂O)
 - Total yield < 1%
- Neutron activation and tritium are serious concerns
- Ref: "Study of Chemical Production Utilizing Fusion Neutrons" GA-A15371, 1979

.... but are limited to fractional utilization with significant complications

Thermal processes use fusion for high temperature process heat

- 80% of fusion energy is carried by 14 MeV neutrons
- Neutrons can penetrate cooled structure, deposit heat in insulated interior high temperature zone
 - Extreme temperatures possible in principle
- Fusion neutrons also create challenges:
 - Neutrons are needed for tritium production
 - 6 Li + n= T + He, 7 Li + n = T + n' + He; (n, 2n) reactions possible
 - Tritium contamination of product must be avoided
 - Tritium is very mobile, especially at high temperature
 - Clean-up of contaminated H₂ would be impractical
 - Neutron activation can contaminate process fluids

Thermochemical water-splitting uses only heat

- Single blanket module with two coolant streams
 - High temperature He stream recovers 30% of heat at 1250°C
 - Tritium breeding zone yields 70% at 450°C
- Match to Sulfur-Iodine cycle
- Projected efficiency 43% and \$1.70 2.00/kg H₂
- He flows directly to H₂ process
- Tritium in H₂ below 10CFR20 limits for unrestricted use

GA Utility Synfuel Study, 1983

High temperatures require innovative heat transfer loops and heat exchangers

NH2
Nuclear Hydrogen

- Extreme temperatures and aggressive process fluids require ceramic components
- Conceptual design studies indicate the technologies are challenging but not impossible.
- Process fluids do not see fusion neutrons no activation concerns
- Two coolant streams needed
 - Tritium permeation must cross breeder tubes to low temperature loop to high temperature loop to process loop to contaminate product
- Slip-stream processing, natural barriers and SiC excellent tritium barrier limit release to 2.1 Ci/d, below 10CFR20 limits for unrestricted use

Hydrogen production could be a major role for Fusion

- Direct processes (radiolysis) appear limited to fractional topping cycles, add significant complication
- Thermal processes high temperature electrolysis, thermochemical water-splitting — are similar to fission application, will benefit from that development
- Fusion can potentially provide higher temperatures, but has additional requirements and concerns
 - Tritium production impacts the fraction of heat delivered at high temperature
 net thermochemical efficiencies <50%
 - Tritium control will have strict limits, will require innovative technology and design choices
- High value of H₂ will benefit fusion economics
- With development, fusion could help fill the future needs for hydrogen